Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^3-14x^2+4x+3\)
\(=\left(3x^3-15x^2+9x\right)+\left(x^2-5x+3\right)\)
\(=3x\left(x^2-5x+3\right)+\left(x^2-5x+3\right)\)
\(=\left(3x+1\right)\left(x^2-5x+3\right)\)
3x^3 - 14x^2 + 4x + 3
= (3x^3+x^2) - 15^2- 5x+ 9x+ 3
= x^2(3x+1)- 5x(3x+1)+ 3(3x+1)
= (x^2- 5x+ 3)(3x+1)
\(A=3x^2-14x^2+4x+3\)
Giả sử:
\(A=\left(3x+a\right)\left(x^2+bx+c\right)\)
\(=3x^3+3bx^2+3cx+ax^{2\:}+abx+ac\)
\(=3x^3+\left(3b+a\right)x^2+\left(3c+ab\right)x+ac\)
Ta có:
\(\begin{cases}3b+a=-14\\3c+ab=4\\ac=3\end{cases}\)\(\Rightarrow\begin{cases}a=1\\b=-5\\c=3\end{cases}\)
Vậy \(A=\left(3x+1\right)\left(x^2-5x+3\right)\)
\(4x^3+14x^2+6x\)
\(=2x\left(2x^2+7x+3\right)\)
\(=2x\left(2x^2+6x+x+3\right)\)
\(=2x\left[2x\left(x+3\right)+\left(x+3\right)\right]\)
\(=2x\left[\left(2x+1\right)\left(x+3\right)\right]\)
\(=2x\left(2x+1\right)\left(x+3\right)\)
Ta có : 5x2 + 14x - 3
= 5x2 + 15x - x - 3
= (5x2 + 15x) - (x + 3)
= 5x(x + 3) - (x + 3)
= (x + 3)(5x - 1)
Phân tích đa thức thành nhân tử 5x2+14x−3
Theo đề bài ta có:
\(5x^2+14x-3\)
\(\Leftrightarrow5x^2+15x-x-3\)
\(\Leftrightarrow\left(5x^2+15x\right)-\left(x-3\right)\)
\(\Leftrightarrow5x\left(x-3\right)-\left(x+3\right)\)
\(\Leftrightarrow\left(3x\right)\left(5x-1\right)\)
\(x^3-x^2-14x+24\)
\(=x^3-2x^2+x^2-2x-12x+24\)
\(=x^2\left(x-2\right)+x\left(x-2\right)-12\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x-12\right)\)
\(=\left(x-2\right)\left(x^2+4x-3x-12\right)\)
\(=\left(x-2\right)\left[x\left(x+4\right)-3\left(x+4\right)\right]\)
\(=\left(x-2\right)\left(x+4\right)\left(x-3\right)\)
Ta có:\(x^3-x^2-14x+24=\left(x^3-2x^2\right)+\left(x^2-2x\right)-\left(12x-24\right)\)
\(=x^2\left(x-2\right)+x\left(x-2\right)-12\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x-12\right)\)
\(=\left(x-2\right)\left(x^2-3x+4x-12\right)\)
\(=\left(x-2\right)\left[x\left(x-3\right)+4\left(x-3\right)\right]\)
\(=\left(x-2\right)\left(x+4\right)\left(x-3\right)\)
\(3x^3-14x^2+4x+3\)
\(=\left(3x^3-15x^2+9x\right)+\left(x^2-5x+3\right)\)
\(=3x\left(x^2-5x+3\right)+\left(x^2-5x+3\right)\)
\(=\left(3x+1\right)\left(x^2-5x+3\right)\)