Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\hept{\begin{cases}\sqrt{2}\left(sinx+cosx\right)=2sin\left(x+\frac{\pi}{4}\right)\\sinx.cosx=\frac{1}{2}sin2x=-\frac{1}{2}cos\left(2x+\frac{\pi}{2}\right)=-\frac{1-2sin^2\left(x+\frac{\pi}{3}\right)}{2}\end{cases}}\)
Vậy phương trình \(\Leftrightarrow2sin\left(x+\frac{\pi}{4}\right)+\frac{1-2sin^2\left(x+\frac{\pi}{4}\right)}{2}=1\)
Đặt \(sin\left(x+\frac{\pi}{4}\right)=a\Rightarrow PT\Leftrightarrow2a+\frac{1-2a^2}{2}=1\Leftrightarrow\orbr{\begin{cases}a=1+\frac{1}{\sqrt{2}}\\a=1-\frac{1}{\sqrt{2}}\end{cases}}\)
vì sin <1 nên \(sin\left(x+\frac{\pi}{4}\right)=1-\frac{1}{\sqrt{2}}\)có 4 nghiệm trên \(\left(0,2\pi\right)\)
a) f'(x) = - 3sinx + 4cosx + 5. Do đó
f'(x) = 0 <=> - 3sinx + 4cosx + 5 = 0 <=> 3sinx - 4cosx = 5
<=> sinx - cosx = 1. (1)
Đặt cos φ = , (φ ∈) => sin φ = , ta có:
(1) <=> sinx.cos φ - cosx.sin φ = 1 <=> sin(x - φ) = 1
<=> x - φ = + k2π <=> x = φ + + k2π, k ∈ Z.
b) f'(x) = - cos(π + x) - sin = cosx + sin.
f'(x) = 0 <=> cosx + sin = 0 <=> sin = - cosx <=> sin = sin
<=> = + k2π hoặc = π - x + + k2π
<=> x = π - k4π hoặc x = π + k, (k ∈ Z).
\(sin\left(x-\dfrac{\pi}{3}\right)-\sqrt{3}cos\left(x-\dfrac{\pi}{3}\right)=2m\)
\(\Leftrightarrow\dfrac{1}{2}sin\left(x-\dfrac{\pi}{3}\right)-\dfrac{\sqrt{3}}{2}cos\left(x-\dfrac{\pi}{3}\right)=m\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right).cos\dfrac{\pi}{3}-cos\left(x-\dfrac{\pi}{3}\right).sin\dfrac{\pi}{3}=m\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}-\dfrac{\pi}{3}\right)=m\)
\(\Leftrightarrow sin\left(x-\dfrac{2\pi}{3}\right)=m\)
Do \(-1\le sin\left(x-\dfrac{2\pi}{3}\right)\le1\) \(\Rightarrow\) pt vô nghiệm khi và chỉ khi \(\left|m\right|>1\)
\(\Rightarrow\left[{}\begin{matrix}-10\le m< -1\\1< m\le10\end{matrix}\right.\) \(\Rightarrow\) có 18 giá trị nguyên của m để pt đã cho vô nghiệm