K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2017

\(=\frac{111112469}{24692469}\)

3 tháng 8 2016

Bài 3:

\(\frac{3n+1}{5n+2}\)

Ta có : (3n +1) * 5 =15n + 5

            (5n+2) *3 = 15n + 6

Mà :  15n + 6 - (15n + 5 ) =1 

       =>\(\frac{3n+1}{5n+2}\) tối giản ( ĐPCM)

17 tháng 11 2022

a: \(=\dfrac{1235\left(1235\cdot2-1\right)-1235-89}{\left(1235\cdot2-1\right)\left(1235+89\right)+1235}\)

\(=\dfrac{1235\left(1235\cdot2-2\right)-89}{1235\cdot\left(1235\cdot2-1\right)+1235+89\cdot\left(1235\cdot2-1\right)}\)

\(=\dfrac{1235\cdot1234-89}{1235\cdot2470+89\cdot2469}\)

=0,93

b: \(=\dfrac{4002}{1001^2-1-999\cdot1001}=\dfrac{4002}{1001\left(1001-999\right)-1}\)

\(=\dfrac{4002}{1001\cdot2-1}=\dfrac{4002}{2001}=2\)

27 tháng 11 2015

Ta có  \(A=\frac{1235.2469-1234}{1234.2469+1235}=\frac{\left(1234+1\right).2469-1234}{1234.2469+1235}=\frac{1234.2469+2469-1234}{1234.2469+1235}=\frac{1234.2469+1235}{1234.2469+1235}=1\)

\(B=\frac{4002}{1000.1002-999.1001}=\frac{4002}{\left(1001-1\right)\left(1001+1\right)-\left(1000-1\right)\left(1000+1\right)}=\frac{4002}{\left(1001^2-1\right)-\left(1000^2-1\right)}=\frac{4002}{1001^2-1-1000^2+1}\)

\(B=\frac{4002}{1001^2-1000^2}=\frac{4002}{\left(1001-1000\right)\left(1001+1000\right)}=\frac{4002}{2001}=2\)

Do đó:  \(B>A\)  ( vì  \(2>1\) )

25 tháng 1 2019

1.

a + b + c = 0 \(\Rightarrow\)a = - ( b + c ) \(\Rightarrow\)a2 = [ -( b + c ) ]2 \(\Rightarrow\)a2 = b2 + c2 + 2bc

Tương tự : b2 = a2 + c2 + 2ac ; c2 = a2 + b2 + 2ab

a + b + c = 0 \(\Rightarrow\)a3 + b3 + c3 = 3abc  ( chứng minh )

Ta có : \(A=\frac{a^2}{b^2+c^2+2bc-b^2-c^2}+\frac{b^2}{a^2+c^2+2ac-a^2-c^2}+\frac{c^2}{a^2+b^2+2ab-a^2-b^2}\)

\(A=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}\)

\(A=\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)

2. quy đồng mà giải

26 tháng 1 2019

tại sao a+b+c=0 lại suy ra đc \(a^3+b^3+c^3=3abc\)

20 tháng 2 2020

Bạn rút gọn sai rồi, mình nhìn đề bài b) cho x>2 thì là biết chắc bạn sai , mình làm lại nhé : ( ĐKXĐ : tự làm )

a) \(Q=\frac{x\left(x+2\right)}{\left(x-2\right)^2}:\left(\frac{\left(x+2\right)\left(x-2\right)+x+6-x^2}{x\left(x-2\right)}\right)\)

\(=\frac{x\left(x+2\right)}{\left(x-2\right)^2}:\frac{x+2}{x\left(x-2\right)}\)

\(=\frac{x\left(x+2\right)}{\left(x-2\right)^2}\cdot\frac{x\left(x-2\right)}{x+2}=\frac{x^2}{x-2}\)

Vậy \(Q=\frac{x^2}{x-2}\)

b) Ta có : \(Q=\frac{x^2}{x-2}=\frac{x^2-4+4}{x-2}=x+2+\frac{4}{x-2}=x-2+\frac{4}{x-2}+4\)

Do \(x>2\Rightarrow x-2>0\) và \(\frac{4}{x-2}>0\)do đó áp dụng BĐT Cô si cho 2 số dương ta được :

\(x-2+\frac{4}{x-2}\ge2\sqrt{\left(x-2\right).\left(\frac{4}{x-2}\right)}=2\cdot\frac{1}{2}=1\)

\(\Rightarrow Q\ge1+4=5\)

Vậy : GTNN của \(Q=5\)

P/s : Ai vào kiểm tra hộ cái :)) Sợ sai lắm nhé, cảm ơn nha 33

20 tháng 2 2020

Nếu chưa học Cô si thì chứng minh rồi dùng thôi :

Bài này sử dụng Cô - si hai số nên cần chứng minh BĐT :

\(a+b\ge2\sqrt{ab}\left(a,b>0\right)\)

Thật vậy : \(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )

Do đó \(a+b\ge2\sqrt{ab}\) với a,b >0

Dấu "=" xảy ra \(\Leftrightarrow a=b\)