Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right).\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{3\sqrt{x}-x+x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{3\left(\sqrt{x}+3\right)}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}.\frac{-\sqrt{x}\left(3-\sqrt{x}\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{-3\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)
a)\(4\sqrt{x}-5\sqrt{4x}-\sqrt{25x}-3\sqrt{x}-5\)
=\(4\sqrt{x}-10\sqrt{x}-5\sqrt{x}-3\sqrt{x}-5\)
=\(-14\sqrt{x}-5\)
b)\(\sqrt{16x}-5\left(\sqrt{x}-2\right)\sqrt{79x}-5\)
=\(4\sqrt{x}-\left(5\sqrt{x}-10\right)\sqrt{79x}-5\)
=\(4\sqrt{x}-\left(5\sqrt{79}x-10\sqrt{79}x\right)-5\)
=\(4\sqrt{x}+5\sqrt{79}x-5\)
a) ta có : \(\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}=x+\sqrt{xy}+y\)
b) ta có : \(\dfrac{x-\sqrt{3x}+3}{x\sqrt{x}+3\sqrt{3}}=\dfrac{x-\sqrt{3x}+3}{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{3x}+3\right)}=\dfrac{1}{\sqrt{x}+\sqrt{y}}\)
A = \(\frac{8}{\sqrt{5}-1}\) - (\(2\sqrt{5}-1\) ) ( chúng ta cần trục căn thức lên để khử mẫu )
= \(\frac{8\left(\sqrt{5}+1\right)}{5-1}\)- \(\left(2\sqrt{5}-1\right)\)
= \(2\sqrt{5}\)+ 2 - \(2\sqrt{5}\)+1
= 3
B = \(\frac{\left(1-\sqrt{x}\right)^2+4\sqrt{x}}{1+\sqrt{x}}\)( x \(\ge\)0 )
= \(\frac{1-2\sqrt{x}+x+4\sqrt{x}}{1+\sqrt{x}}\)
= \(\frac{1+2\sqrt{x}+x}{1+\sqrt{x}}\)
= \(\frac{\left(1+\sqrt{x}\right)^2}{1+\sqrt{x}}\)
= 1 +\(\sqrt{x}\)
#mã mã#
a) \(\sqrt{16x-8}+\sqrt{36x-18}-\sqrt{64x-32}=\sqrt{10}\)
\(\Leftrightarrow\sqrt{8\left(2x-1\right)}+\sqrt{18\left(2x-1\right)}-\sqrt{32\left(2x-1\right)}=\sqrt{10}\)
\(\Leftrightarrow\sqrt{8}.\sqrt{2x-1}+\sqrt{18}.\sqrt{2x-1}-\sqrt{32}.\sqrt{2x-1}=\sqrt{10}\)
\(\Leftrightarrow\sqrt{2x-1}.\left(\sqrt{8}+\sqrt{18}-\sqrt{32}\right)=\sqrt{10}\)
\(\Leftrightarrow\sqrt{2x-1}.\sqrt{2}=\sqrt{10}\)
\(\Leftrightarrow\sqrt{2x-1}=\sqrt{5}\)
\(\Leftrightarrow2x-1=5\)
\(\Leftrightarrow x=3\)
Vậy ...
b) \(\sqrt{x^2-6x+9}=x+3\)
\(\Leftrightarrow\sqrt{x^2-2.x.3+3^2}=x+3\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=x+3\)
\(\Leftrightarrow\left|x-3\right|=x+3\)
\(\Leftrightarrow x-3=x+3\) hoặc \(x-3=-x-3\)
\(\Leftrightarrow x=0\)
Vậy ...
bài 2 :
A = \(\left(\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}-\dfrac{4\sqrt{ab}}{a-b}\right)\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}-\left(a+b\right)}\right)\)
\(=\left(\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}-\dfrac{4\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a+\sqrt{b}}\right)}\right)\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}-\left(a+b\right)}\right)\)
\(=\left(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right)\left(\dfrac{\sqrt{a^3}+\sqrt{b^3}}{\sqrt{ab}-a-b}\right)\)
\(=\left(\dfrac{a+2\sqrt{ab}+b-4\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right)\left(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{-a+\sqrt{ab}-b}\right)\)
\(=\dfrac{a-2\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}.\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{-\left(a-\sqrt{ab}+b\right)}\)
\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}.\left(-\left(\sqrt{a}+\sqrt{b}\right)\right)\)
\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right).\left(-1\right).\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}\)
\(=-\left(\sqrt{a}-\sqrt{b}\right)=\sqrt{b}-\sqrt{a}\)
cuối cùng cũng xong, mong bn phù hộ độ trì cho mk