Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
\(=2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)\)
\(=8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x\)
\(=x^3-16x^2+25x\)
b) \(\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)
\(=a^2+b^2+c^2-2ab+2ac-2bc-\left(b^2-2bc+c^2\right)+2ab-2ac\)
\(=a^2+b^2+c^2-2ab+2ac-2bc-b^2+2bc-c^2+2ab-2ac\)
\(=a^2\)
Siêu sao bóng đá Lần sau nhớ gõ Latex nhé, tiêu đề bạn nên viết rõ ra như là Toán lớp 8 nhân đa thứ với đa thức chẳng hạn
a) \(\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)
\(=\left(a^2+\left(-b\right)^2+c^2-2ab+2ac-2bc\right)-\left(b^2-2bc+c^2\right)+2ab-2ac\)
\(=a^2+b^2+c^2-2ab+2ac-2bc-b^2+2bc-c^2+2ab-2ac\)
\(=a^2+b^2-b^2+c^2-c^2-2ab+2ab+2ac-2ac-2bc+2bc\)
\(=a^2\)
cho \(c^2+2ab-2ac-2bc\)
rút gọn biểu thức \(P=\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}\)
Ta có: \(2ab+c=\dfrac{4ab+1-2a-2b}{2}=\dfrac{\left(2a-1\right)\left(2b-1\right)}{2}\)
Và: \(a+b=\dfrac{1-2c}{2}\)
\(\Rightarrow\left(a+b\right)^2=\dfrac{\left(2c-1\right)^2}{4}\)
Thế vô bài toán ta được
\(P=\dfrac{2ab+c}{\left(a+b\right)^2}.\dfrac{2bc+a}{\left(b+c\right)^2}.\dfrac{2ca+b}{\left(c+a\right)^2}\)
\(=\dfrac{\dfrac{\left(2a-1\right)\left(2b-1\right)}{2}}{\dfrac{\left(2c-1\right)^2}{4}}.\dfrac{\dfrac{\left(2b-1\right)\left(2c-1\right)}{2}}{\dfrac{\left(2a-1\right)^2}{4}}.\dfrac{\dfrac{\left(2c-1\right)\left(2a-1\right)}{2}}{\dfrac{\left(2b-1\right)^2}{4}}\)
\(=\dfrac{4.4.4}{2.2.2}=8\)
ta có : a+b+c=0=>a+b=-c ; b+c=-a ; a+c=-b
ta có: M= \(\frac{2ab}{a^2+\left(b+c\right)\left(b-c\right)}+\frac{2bc}{b^2+\left(c+a\right)\left(c-a\right)}+\frac{2ca}{c^2+\left(a+b\right)\left(a-b\right)}\)
M=\(\frac{2ab}{a^2-a\left(b-c\right)}+\frac{2bc}{b^2-b\left(c-a\right)}+\frac{2ca}{c^2-c\left(a-b\right)}\)
M=\(\frac{2ab}{a\left(a-b+c\right)}+\frac{2bc}{b\left(b-c+a\right)}+\frac{2ca}{c\left(c-a+b\right)}\)
M=\(\frac{2ab}{-ab+\left(a+c\right)}+\frac{2bc}{-bc+\left(a+b\right)}+\frac{2ac}{-ac+\left(b+c\right)}\)
M=\(\frac{2ab}{-2ab}+\frac{2bc}{-2bc}+\frac{2ca}{-2ca}\)
M=-1-1-1=-3
Vậy với a+b+c=0 thì M=-3
\(\left(a-b+c\right)^2=\left[a+\left(-b\right)+c\right]^2\)
\(=a^2+\left(-b^2\right)+c^2+2.a.\left(-b\right)+2.\left(-b\right)\left(-c\right)+2.c.a\)
\(=a^2+b^2+c^2-2ab-2bc+2ca\)