K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2021

\(\sqrt[3]{53\sqrt{5}+124}+\sqrt[3]{32\sqrt{5}-72}\)

\(=\sqrt[3]{\left(\sqrt{5}\right)^3+3.5.4+3.\sqrt{5}.4+4^3}+\sqrt[3]{\left(\sqrt{5}\right)^3-3.5.3+3.\sqrt{5}.3^2-3^3}\)

\(=\sqrt[3]{\left(\sqrt{5}+4\right)^3}+\sqrt[3]{\left(\sqrt{5}-3\right)^3}\)

\(=\sqrt{5}+4+\sqrt{5}-3\)

\(=2\sqrt{5}+1\)

12 tháng 8 2017

\(B=\left(\sqrt{x}+\frac{\sqrt{5}\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{2}-\sqrt{3}}\right)\frac{\left(\sqrt{x}-\sqrt{5}\right)^2}{\sqrt{x}-\sqrt{5}}=\left(\sqrt{x}+\sqrt{5}\right)\left(\sqrt{x}-\sqrt{5}\right)=x-5\)

14 tháng 8 2020

Đặt:    \(B=\sqrt{7+\sqrt{5}}+\sqrt{7-\sqrt{5}}\)

=>    \(B^2=7+\sqrt{5}+7-\sqrt{5}+2\sqrt{\left(7+\sqrt{5}\right)\left(7-\sqrt{5}\right)}\)

=>   \(B^2=14+2\sqrt{49-5}\)

=>   \(B^2=14+2\sqrt{44}\)

=>   \(A=\frac{\sqrt{14+4\sqrt{11}}}{7+2\sqrt{11}}-\sqrt{\left(\sqrt{2}-1\right)^2}\)

=>   \(A=\sqrt{\frac{2}{7+2\sqrt{11}}}-\left(\sqrt{2}-1\right)\)

=>   \(A=\sqrt{\frac{2}{7+2\sqrt{11}}}-\sqrt{2}+1\)

ĐỀ BÀI CHẮC SAI RỒI PHẢI DƯỚI MẪU PHẢI LÀ    \(\sqrt{7+2\sqrt{11}}\)    THÌ LÚC ĐÓ BIỂU THỨC A RA ĐẸP HƠN !!!!

NẾU SỬA ĐỀ BÀI NHƯ TRÊN:

=>    \(A=\frac{\sqrt{2}.\sqrt{7+2\sqrt{11}}}{\sqrt{7+2\sqrt{11}}}-\left(\sqrt{2}-1\right)\)

=>   \(A=\sqrt{2}-\sqrt{2}+1\)

=>   \(A=1\)

ĐÓ BÂY GIỜ RA A  = 1 RẤT ĐẸP

AH
Akai Haruma
Giáo viên
17 tháng 8 2021

Lời giải:

Gọi biểu thức trên là $A$

Đặt \(\sqrt[3]{15\sqrt{3}-26}=a; \sqrt[3]{15\sqrt{3}+26}=b\). Ta có:

\(a^3-b^3=-52\)

\(ab=-1\)

\(A^3=(a-b)^3=a^3-3ab(a-b)-b^3=-52+3A\)

\(\Leftrightarrow A^3-3A+52=0\)

\(\Leftrightarrow A^2(A+4)-4A(A+4)+13(A+4)=0\)

\(\Leftrightarrow (A+4)(A^2-4A+13)=0\)

Dễ thấy $A^2-4A+13>0$ nên $A+4=0$

$\Leftrightarrow A=-4$

 

20 tháng 6 2019

\(\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)

\(=\sqrt{3-\sqrt{5}}.\sqrt{3+\sqrt{5}}.\left(\sqrt{5}-1\right).\sqrt{2}.\sqrt{3+\sqrt{5}}\)

\(=\sqrt{9-5}\left(\sqrt{5}-1\right)\sqrt{6+2\sqrt{5}}\)

\(=2\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)\)

\(=2\left(5-1\right)\)

\(=8\)

6 tháng 6 2017

ok mk sẽ giải

7 tháng 6 2017

Gọi \(A=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)

\(\Leftrightarrow\sqrt{2}A=\sqrt{2}.\sqrt{2+\sqrt{3}}-\sqrt{2}.\sqrt{2-\sqrt{3}}\)

\(=\sqrt{4+2.\sqrt{3}}-\sqrt{4-2.\sqrt{3}}\)

\(=\sqrt{1+2\sqrt{3}+3}-\sqrt{1-2\sqrt{3}+3}\)

\(=\sqrt{\left(1+\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)

\(=1+\sqrt{3}-\left(\sqrt{3}-1\right)=2\)

\(\Rightarrow A=\frac{2}{\sqrt{2}}=\sqrt{2}\)

a: Ta có: \(\sqrt{8+2\sqrt{15}}-\sqrt{6+2\sqrt{5}}\)

\(=\sqrt{5}+\sqrt{3}-\sqrt{5}-1\)

\(=\sqrt{3}-1\)

b: Ta có: \(\sqrt{17-2\sqrt{72}}+\sqrt{19+2\sqrt{18}}\)

\(=3-2\sqrt{2}+3\sqrt{2}+1\)

\(=4+\sqrt{2}\)

c: Ta có: \(\sqrt{12-2\sqrt{32}}+\sqrt{9+4\sqrt{2}}\)

\(=2\sqrt{2}-2+2\sqrt{2}+1\)

\(=4\sqrt{2}-1\)

22 tháng 8 2021

a)

\(\sqrt{8+2\sqrt{15}}-\sqrt{6+2\sqrt{5}}\\ =\sqrt{5+2\sqrt{5}\cdot\sqrt{3}+3}-\sqrt{5+2\sqrt{5}\cdot\sqrt{1}+1}\\ =\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{1}\right)^2}\\ =\sqrt{5}+\sqrt{3}-\sqrt{5}-\sqrt{1}\\ =\sqrt{3}-\sqrt{1}\)

b)

\(\sqrt{17-2\sqrt{72}}+\sqrt{19+2\sqrt{18}}\\ =\sqrt{9-2\sqrt{9}\cdot\sqrt{8}+8}+\sqrt{18+2\sqrt{18}\cdot\sqrt{1}+1}\\ =\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(3\sqrt{2}+1\right)^2}\\ =3-2\sqrt{2}+3\sqrt{2}+1\\ =4+\sqrt{2}\)

c)

\(\sqrt{12-2\sqrt{32}}+\sqrt{9+4\sqrt{2}}\\ =\sqrt{8-2\sqrt{8}\cdot\sqrt{4}+4}+\sqrt{8+2\sqrt{8}\cdot\sqrt{1}+1}\\ =\sqrt{\left(2\sqrt{2}-2\right)^2}+\sqrt{\left(2\sqrt{2}+1\right)^2}\\ =2\sqrt{2}-2+2\sqrt{2}+1\\ =4\sqrt{2}-1\)