Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(\sqrt{x}+\frac{\sqrt{5}\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{2}-\sqrt{3}}\right)\frac{\left(\sqrt{x}-\sqrt{5}\right)^2}{\sqrt{x}-\sqrt{5}}=\left(\sqrt{x}+\sqrt{5}\right)\left(\sqrt{x}-\sqrt{5}\right)=x-5\)
Đặt: \(B=\sqrt{7+\sqrt{5}}+\sqrt{7-\sqrt{5}}\)
=> \(B^2=7+\sqrt{5}+7-\sqrt{5}+2\sqrt{\left(7+\sqrt{5}\right)\left(7-\sqrt{5}\right)}\)
=> \(B^2=14+2\sqrt{49-5}\)
=> \(B^2=14+2\sqrt{44}\)
=> \(A=\frac{\sqrt{14+4\sqrt{11}}}{7+2\sqrt{11}}-\sqrt{\left(\sqrt{2}-1\right)^2}\)
=> \(A=\sqrt{\frac{2}{7+2\sqrt{11}}}-\left(\sqrt{2}-1\right)\)
=> \(A=\sqrt{\frac{2}{7+2\sqrt{11}}}-\sqrt{2}+1\)
ĐỀ BÀI CHẮC SAI RỒI PHẢI DƯỚI MẪU PHẢI LÀ \(\sqrt{7+2\sqrt{11}}\) THÌ LÚC ĐÓ BIỂU THỨC A RA ĐẸP HƠN !!!!
NẾU SỬA ĐỀ BÀI NHƯ TRÊN:
=> \(A=\frac{\sqrt{2}.\sqrt{7+2\sqrt{11}}}{\sqrt{7+2\sqrt{11}}}-\left(\sqrt{2}-1\right)\)
=> \(A=\sqrt{2}-\sqrt{2}+1\)
=> \(A=1\)
ĐÓ BÂY GIỜ RA A = 1 RẤT ĐẸP
Lời giải:
Gọi biểu thức trên là $A$
Đặt \(\sqrt[3]{15\sqrt{3}-26}=a; \sqrt[3]{15\sqrt{3}+26}=b\). Ta có:
\(a^3-b^3=-52\)
\(ab=-1\)
\(A^3=(a-b)^3=a^3-3ab(a-b)-b^3=-52+3A\)
\(\Leftrightarrow A^3-3A+52=0\)
\(\Leftrightarrow A^2(A+4)-4A(A+4)+13(A+4)=0\)
\(\Leftrightarrow (A+4)(A^2-4A+13)=0\)
Dễ thấy $A^2-4A+13>0$ nên $A+4=0$
$\Leftrightarrow A=-4$
\(\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
\(=\sqrt{3-\sqrt{5}}.\sqrt{3+\sqrt{5}}.\left(\sqrt{5}-1\right).\sqrt{2}.\sqrt{3+\sqrt{5}}\)
\(=\sqrt{9-5}\left(\sqrt{5}-1\right)\sqrt{6+2\sqrt{5}}\)
\(=2\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)\)
\(=2\left(5-1\right)\)
\(=8\)
Gọi \(A=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)
\(\Leftrightarrow\sqrt{2}A=\sqrt{2}.\sqrt{2+\sqrt{3}}-\sqrt{2}.\sqrt{2-\sqrt{3}}\)
\(=\sqrt{4+2.\sqrt{3}}-\sqrt{4-2.\sqrt{3}}\)
\(=\sqrt{1+2\sqrt{3}+3}-\sqrt{1-2\sqrt{3}+3}\)
\(=\sqrt{\left(1+\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)
\(=1+\sqrt{3}-\left(\sqrt{3}-1\right)=2\)
\(\Rightarrow A=\frac{2}{\sqrt{2}}=\sqrt{2}\)
a: Ta có: \(\sqrt{8+2\sqrt{15}}-\sqrt{6+2\sqrt{5}}\)
\(=\sqrt{5}+\sqrt{3}-\sqrt{5}-1\)
\(=\sqrt{3}-1\)
b: Ta có: \(\sqrt{17-2\sqrt{72}}+\sqrt{19+2\sqrt{18}}\)
\(=3-2\sqrt{2}+3\sqrt{2}+1\)
\(=4+\sqrt{2}\)
c: Ta có: \(\sqrt{12-2\sqrt{32}}+\sqrt{9+4\sqrt{2}}\)
\(=2\sqrt{2}-2+2\sqrt{2}+1\)
\(=4\sqrt{2}-1\)
a)
\(\sqrt{8+2\sqrt{15}}-\sqrt{6+2\sqrt{5}}\\ =\sqrt{5+2\sqrt{5}\cdot\sqrt{3}+3}-\sqrt{5+2\sqrt{5}\cdot\sqrt{1}+1}\\ =\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{1}\right)^2}\\ =\sqrt{5}+\sqrt{3}-\sqrt{5}-\sqrt{1}\\ =\sqrt{3}-\sqrt{1}\)
b)
\(\sqrt{17-2\sqrt{72}}+\sqrt{19+2\sqrt{18}}\\ =\sqrt{9-2\sqrt{9}\cdot\sqrt{8}+8}+\sqrt{18+2\sqrt{18}\cdot\sqrt{1}+1}\\ =\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(3\sqrt{2}+1\right)^2}\\ =3-2\sqrt{2}+3\sqrt{2}+1\\ =4+\sqrt{2}\)
c)
\(\sqrt{12-2\sqrt{32}}+\sqrt{9+4\sqrt{2}}\\ =\sqrt{8-2\sqrt{8}\cdot\sqrt{4}+4}+\sqrt{8+2\sqrt{8}\cdot\sqrt{1}+1}\\ =\sqrt{\left(2\sqrt{2}-2\right)^2}+\sqrt{\left(2\sqrt{2}+1\right)^2}\\ =2\sqrt{2}-2+2\sqrt{2}+1\\ =4\sqrt{2}-1\)
\(\sqrt[3]{53\sqrt{5}+124}+\sqrt[3]{32\sqrt{5}-72}\)
\(=\sqrt[3]{\left(\sqrt{5}\right)^3+3.5.4+3.\sqrt{5}.4+4^3}+\sqrt[3]{\left(\sqrt{5}\right)^3-3.5.3+3.\sqrt{5}.3^2-3^3}\)
\(=\sqrt[3]{\left(\sqrt{5}+4\right)^3}+\sqrt[3]{\left(\sqrt{5}-3\right)^3}\)
\(=\sqrt{5}+4+\sqrt{5}-3\)
\(=2\sqrt{5}+1\)