K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2018

\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+....+\left(\frac{1}{2}\right)^{99}\)

\(\Rightarrow2B=1+\frac{1}{2}+...+\left(\frac{1}{2^{98}}\right)\)

\(\Rightarrow B=\frac{1}{2}-\frac{1}{2^{99}}>-\frac{1}{2}>A\)

\(\Rightarrow B>A\)

3 tháng 8 2018

\(2A=1+\frac{1}{2}+...+\frac{1}{2^{49}}\)

\(2A-A=1-\frac{1}{2^{50}}\)

\(A=1-\frac{1}{2^{50}}\)=> A bé hơn 1

tương tự nha

3 tháng 8 2018

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)

\(2A=2.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(A=1-\frac{1}{2^{50}}< 1\)

    

20 tháng 6 2017

a, \(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(3C-C=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(2C=1-\frac{1}{3^{99}}\)

\(C=\frac{1}{2}-\frac{1}{2.3^{99}}< \frac{1}{2}\)(đpcm)

b, Đặt \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)\)

\(2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(6A=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(6A-2A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(4A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{397}{3^{100}}\)

\(A=\frac{3}{4}-\frac{397}{4.3^{100}}< \frac{3}{4}\)(đpcm)

15 tháng 7 2017

a) \(\frac{x}{4}=\frac{16}{x^2}\)\(=>x^3=16.4\)\(=>x^3=64\)\(=>x=4\)

b) \(\frac{4}{3}:\frac{4}{5}=\frac{2}{3}.\left(\frac{1}{10}.x\right)\)\(=>\frac{4}{3}.\frac{5}{4}=\frac{2}{3}\left(\frac{1}{10}x\right)\)\(=>\frac{5}{3}=\frac{2}{3}\left(\frac{1}{10}x\right)\)\(=>\frac{5}{3}:\frac{2}{3}=\frac{1}{10}x\)\(=>\frac{5}{3}.\frac{3}{2}=\frac{1}{10}x\)\(=>\frac{5}{2}=\frac{1}{10}x\)\(=>x=\frac{5}{2}:\frac{1}{10}\)\(=>x=\frac{5}{2}.10\)\(=>x=25\)

vậy x=25

15 tháng 7 2017

1.

a) \(\frac{x}{4}=\frac{16}{x^2}\)

\(\Rightarrow x^3=64\)

\(\Rightarrow x^3=4^3\)

\(\Rightarrow x=4\)

b) \(1\frac{1}{3}:0,8=\frac{2}{3}.\left(0,1.x\right)\)

\(\frac{5}{3}=\frac{2}{3}.\frac{x}{10}\)

\(\frac{x}{10}=\frac{5}{2}\)

\(\Rightarrow x=\frac{5.10}{2}=25\)

2.

\(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)

\(3A=1+\frac{1}{3}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\)

\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\right)\)

\(2A=1-\frac{1}{3^{99}}< 1\)

\(\Rightarrow A=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\)

17 tháng 2 2018

1) \(+2x+3y⋮17\)

\(\Rightarrow26x+39y⋮17\)

\(\Rightarrow\left(9x+5y\right)+17x+34y⋮17\)

Mà \(17x+34y⋮17\)

\(\Rightarrow9x+5y⋮17\)

\(+9x+5y⋮17\)

\(\Rightarrow36x+20y⋮17\)

\(\Rightarrow\left(2x+3y\right)+34x+17y⋮17\)

Mà \(34x+17y⋮17\)

\(\Rightarrow2x+3y⋮17\)

2 tháng 1 2019

B= (1/2-1/3) + (1/3-1/4) + (1/4-1/5)+...+( 1/99-1/100)

B = (1/2-1/3) + (1/3 - 1/4) + (1/4 - 1/5)+...+ (1/99 + 1/100)

B= 1/2 +1/100=51/100

k mk nhóe

sai thì chỉ mk nhoa

2 tháng 1 2019

a)A=1/51+1/52+...+1/100

=>A>1/100+1/100+...+1/100

=>A>50/100(vì có 50 số hạng)

=> A>1/2

b)Ta có:

B=1/2.3+1/3.4+...+1/99.100

=> B=1/2-1/3+1/3-1/4+...+1/99-1/100

=> B=1/2-1/100

Mà 1/100>0

=> B<1/2

=> B<1/2<A

=>B<A