K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2018

Hãy tích cho tui đi

Nếu bạn tích tui

Tui không tích lại đâu

THANKS

4 tháng 8 2018

\(2=\sqrt{4}>\sqrt{3}\)

\(6=\sqrt{36}< \sqrt{41}\)

\(7=\sqrt{49}>\sqrt{47}\)

31 tháng 3 2017

a) \(2\)\(\sqrt{3}\)

Bình phương cả hai số ta được :

\(2^2=4;\sqrt{3}^2=3\)\(\Rightarrow2^2>\sqrt{3}^2\left(4>3\right)\rightarrow2>\sqrt{3}\)

b) \(6\)\(\sqrt{41}\)

Bình phương như câu a ta được : \(6^2< 41^2\Rightarrow6< \sqrt{41}\)

c) 7 và \(\sqrt{47}\)

\(7^2>\sqrt{47}^2\Rightarrow7>\sqrt{47}\)

23 tháng 4 2017

a.2>\(\sqrt{3}\)

b.6<\(\sqrt{41}\)

c.7>\(\sqrt{47}\)

3 tháng 9 2019

\(\Leftrightarrow\sqrt{\left(\sqrt{x}+1\right)^2}=2\Leftrightarrow\sqrt{x}+1=2\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}=3\Leftrightarrow\sqrt{x}-2=3\Leftrightarrow\sqrt{x}=5\Leftrightarrow x=25\) 

\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}-1\right)^2}=\sqrt{x-1}-1=2\) 

\(\Leftrightarrow x=10\)

3 tháng 9 2019

 ĐKXĐ tự tìm\(b,\sqrt{x-4\sqrt{x}+4}=3\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}=3\)

\(\Leftrightarrow\sqrt{x}-2=3\)

\(\Leftrightarrow\sqrt{x}=5\)

\(\Rightarrow x=5^2=25\)

4 tháng 10 2016

k đi mình làm cho

2 tháng 6 2017

Võ Đông Anh Tuấn

Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)

a)

\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)

Vậy \(7>3\sqrt{5}\)

b)

\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)

Vậy \(8< 2\sqrt{7}+3\)

c)

\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)

Vậy \(3\sqrt{6}< 2\sqrt{15}\)

24 tháng 7 2019

\(\sqrt{6-x}+\sqrt{x+2}=\sqrt{\left(1.\sqrt{6-x}+1.\sqrt{x+2}\right)^2}\) \(\le\left(1^2+1^2\right)\left(6-x+x+2\right)=2.8=16\)

24 tháng 7 2019

bạn tìm điều kiện xác định r dùng bunhiacopxki là ra nhé 

18 tháng 12 2016

a) \(2^2=4\)

   \(\sqrt{3^2}=3\)
\(4>3\Rightarrow\) \(2>\sqrt{3}\)
b) \(6^2=36\)
 \(\sqrt{41^2}=41\)
\(36< 41\Rightarrow6< \sqrt{41}\)

22 tháng 12 2016

Bài này: sao lại lớp 9 nhỉ; lớp 7 có rồi mà