K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 10 2021

Lời giải:

a. $\tan 25^0=\frac{\sin 25^0}{\cos 25^0}> \sin 25^0$ do $0< \cos 25^0< 1$

b. $\cot 32^0 = \frac{\cos 32^0}{\sin 32^0}> \cos 32^0$ do $0< \sin 32^0< 1$
c. $\tan 45^0= 1; \cos 45^0=\frac{\sqrt{2}}{2}$ nên $\tan 45^0> \cos 45^0$

d. $\cot 60^0= \frac{\cos 60^0}{\sin 60^0}=\frac{\sin 30^0}{\sin 60^0}> \sin 30^0$ do $0< \sin 60^0< 1$

24 tháng 4 2017

Dùng tính chất sinα<tgαsinα<tgαcosα<cotgαcosα<cotgα.

ĐS:

a) tg25>sin25tg25∘>sin25∘;

b) cotg32>cos32cotg32∘>cos32∘;

c) tg45>sin45=cos45tg45∘>sin45∘=cos45∘;

d) cotg60>cos60=sin30cotg60∘>cos60∘=sin30∘.

20 tháng 8 2017

1

\(5\) và   \(\sqrt{2}\)

\(5>\sqrt{2}\)

2

\(6\) và   \(\sqrt{81}\)

\(6< \sqrt{81}\)

3

\(\sqrt{81}\) và    \(9\)

\(\sqrt{81}=9\)

21 tháng 8 2017

5 > \(\sqrt{2}\)

6 < \(\sqrt{81}\)

\(\sqrt{81}\)= 9

Nếu mình đúng thì các bạn k mình nhé

23 tháng 8 2015

Ghi nhầm 

\(\sqrt{3}+1<\sqrt{4}+1=3\)

Vậy 3 > \(\sqrt{3}+1\)

28 tháng 8 2017

a) \(\sqrt{2004}-\sqrt{2003}=\frac{1}{\sqrt{2004}+\sqrt{2003}}>\frac{1}{\sqrt{2006}+\sqrt{2005}}=\sqrt{2006}-\sqrt{2005}\)

b) Tương tự.

AH
Akai Haruma
Giáo viên
12 tháng 8 2019

Lời giải:
\(A=\sqrt{2017}-\sqrt{2016}=\frac{2017-2016}{\sqrt{2017}+\sqrt{2016}}=\frac{1}{\sqrt{2017}+\sqrt{2016}}\)

\(B=\sqrt{2018}-\sqrt{2017}=\frac{2018-2017}{\sqrt{2018}+\sqrt{2017}}=\frac{1}{\sqrt{2018}+\sqrt{2017}}\)

Dễ thấy \(0< \sqrt{2017}+\sqrt{2016}< \sqrt{2018}+\sqrt{2017}\Rightarrow \frac{1}{\sqrt{2017}+\sqrt{2016}}>\frac{1}{\sqrt{2018}+\sqrt{2017}}\)\(\Rightarrow A>B\)