Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mừng quá. Xong hết rồi. Hơn nửa tiếng bây giờ cũng được đền đáp =))
a) MB = MC (=MA) (giao điểm 2 tiếp tuyến cách đều tiếp điểm)
b) MA = MB = MC => T/g ABC vuông tại A => ^A = 90
T/g OAB cân tại O, có OM là đ/phân giác nên OM cũng là đ cao hay ^ANM = 90
Tương tự, ^APM = 90
=> đpcm
c) MO'/MO = O'C/BM (CMO' ~ BOM) = O'C/CM = CP/MP (CMO' ~ PMC) = MN/MP (PMC = NBM góc vuông - cạnh huyền - góc nhọn so le trong)
=> đpcm
d) Trong t/g vuông OMO' có MA là đường cao, OM^2 = OA.OO' <=> OM = 20 => BM = 12 (Pytago) => BC = 24
e) Dùng ta lét tìm ra OE, EC, còn OC tìm theo pytago trong t/g vuông OBC
f) ABKC là hình chữ nhật => AK cắt BC tại trung điểm M => đpcm
bạn tự vẽ hình nha!!!!!!!!!!
a) xét đg tròn (o) có: góc AIB = 90 độ ( góc nt chắn nửa đg tròn) => góc KIB =90 độ
có góc MHB = 90 độ( MN vuông góc vs AB) => goc KHB = 90 độ
xét tg BHKI ta có: góc KHB = 90 độ ( cmt)
góc KIB = 90 độ (cmt)
==> góc KHB + góc KIB = 90 + 90 = 180 độ
mà 2 góc KHB và góc KIB ở vị trí đối nhau ==> tg BHKI nt( tổng 2 góc đối = 180 độ)
b) từ tg BHKI nt (cma) => góc CKI = góc IBH ( góc ngoài tại đỉnh K = góc trong của đỉnh đối diện B)
=> góc CKI = góc CBH ( I thuộc CB)
xét tam giác CIK và tam giác CHB ta có: góc C chung
góc CKI = góc CBH ( ctm)
==> tam giác CIK đồng dạng vs tam giác CHB (g.g)
=> \(\frac{CI}{CK}=\frac{CH}{CB}\)( tỉ số đồng dạng)
==> CI . CB= CK. CH ( đpcm)