Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; => \(3^x+3^x.3+3^x.3^2=1053\)
=> \(3^x.\left(1+3+3^2\right)=1053\)
=> \(3^x.13=1053\)
=> \(3^x=81\)
=> \(3^x=3^4\)
=> x=4
b; => (x-1)^2.(x-1)=(x-1)^2
=> (x-1)^2.(x-1)-(x-1)^2=0
=> (x-1)^2.[(x-1)^2-1)=0
\(\hept{\begin{cases}x-1=0\\x-1=1\\x-1=-1\end{cases}}\)
=> \(\hept{\begin{cases}x=1\\x=2\\x=0\end{cases}}\)
Đề đúng là 3x+3x+1+3x+2=1053
\(\Rightarrow3^x\left(1+3^1+3^2\right)=1053\)
\(\Rightarrow3^x\cdot13=1053\)
\(\Rightarrow3^x=81\)
\(\Rightarrow3^x=3^4\)
\(\Rightarrow x=4\)
Đề bài phải là :
\(3^x+3^{x+1}3^{x+2}=1053\)
\(3^x+3^x.3+3^x.3^2=1053\)
\(3^x.\left(1+3+3^2\right)=1053\)
\(3^x.\left(1+3+9\right)=1053\)
\(3^x.13=1053\)
\(3^x=1053:13\)
\(3^x=81\)
\(3^x=3^4\)
\(x=4\)
Chúc bạn học tốt ngu vip
a, \(2.x^x=10.3^{12}+8.27^4\)
\(2.x^x=10.3^{12}+8.3^{12}\)
\(2.x^x=3^{12}.\left(10+8\right)\)
\(2.x^x=3^{12}.18\)
\(2.x^x=3^{12}.2.3^3\)
\(2.x^x=3^{15}.2\)
\(x^x=3^{15}\)( Hình như sai đề )
b,\(3^{2x+2}=9^{x+3}\)
\(3^{2x+2}=3^{2x+3}\)
\(a,3x+17x=340\)
\(x\left(17+3\right)=340\)
\(x20=340\)
\(x=340:20=17\)
\(b,\left|2x+1\right|=3\\ \Rightarrow\left[{}\begin{matrix}2x+1=3\\2x+1=-3\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x=3-1=2\\2x=-3-1=-4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
\(c,3^x+3^{x+1}+3^{x+2}=1053\\ 3^x\left(1+3+9\right)=1053\\ 3^x.13=1053\\ 3^x=1053:13=81=3^4\\ \Rightarrow x=4\)
3x+2+3x+1+3x < 1053
3x(32+3+1) < 1053
3x . 13 < 81 . 13
=> 3x < 81
=> 3x < 34
=> x < 4
Ta có 3x + 3x + 1 + 3x + 2 = 1053
=> 3x(1 + 31 + 32) = 1053
=> 3x(1 + 3 + 9) = 1053
=> 3x . 13 = 1053
=> 3x = 1053 : 13 = 81
=> x = 4
3 x + 3 x+1 + 3 x+2 = 1053
3x+3x.31+3x.32=1053
3x(1+31+32)=1053
3x.(1+3+9)=1053
3x.13=1053
3x=1053:13
3x=81
3x=34
=>x=4
a) \(x +(x + 1) + (x + 2) + ... + (x +30) = 620\)
\(=\left(x+x+...+x+x\right)+\left(1+2+...+30\right)\)
\(=31x+465=620\)
\(=31x=620-465\)
\(=31x=155\)
\(=x=155\div31\)
\(x=5\)
b) \(2+4+6+8+....+2x = 210\)
\(\Rightarrow2.1+2.2+2.3+2.4+...+2.x\)
\(\Rightarrow2.\left(2+4+6+8+...+x\right)=210\)
\(\Rightarrow2+4+6+8+x=210\div2\)
\(\Rightarrow2+4+6+8+...+x=105\)
\(\Rightarrow x=14\)
Ta có:
3x+3x+1+3x+2 =1053
=>3x+3x.3+3x.32=1053
=>3x.(1+3+32)=1053
=>3x.13=1053
=>3x =81
=>3x=34
=>x=4
Vậy x=4