Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Đặt dãy trên là \(A\)
Theo bài ra ta có :
\(A=\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+\frac{1}{6.6}+...+\frac{1}{100.100}\)
\(\Rightarrow A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\left(đpcm\right)\)
2) \(A=\frac{5^{2018}-2017+1}{5^{2018}-2017}=\frac{5^{2018}-2017}{5^{2018}-2017}+\frac{1}{5^{2018}-2017}=1+\frac{1}{5^{2018}-2017}\)( 1 )
\(B=\frac{5^{2018}-2019+1}{5^{2018}-2019}=\frac{5^{2018}-2019}{5^{2018}-2019}+\frac{1}{5^{2018}-2019}=1+\frac{1}{5^{2018}-2019}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(A=1+\frac{1}{5^{2018}-2017}< 1+\frac{1}{5^{2018}-2019}=B\)
\(\Rightarrow A< B\)
Vậy \(A< B.\)
1) Ta có B =
\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) < \(\frac{1}{1.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)= \(\frac{99}{100}\)
=> B < 1 ( chứ không phải \(\frac{1}{2}\) bạn nhé)
Sai thì thôi chứ mk chỉ làm rờ thôi
\(A=5+5^2+5^3+5^4+...+5^{2004}\)
\(5A=5^2+5^3+5^4+5^5+...+5^{2005}\)
\(5A-A=\left(5^2+5^3+5^4+5^5+...+5^{2005}\right)-\left(5+5^2+5^3+5^4+...+5^{2004}\right)\)
\(4A=5^{2005}-5\)
\(A=\dfrac{5^{2005}-5}{4}\)
\(B=7^1+7^2+7^3+....+7^{2015}\)
\(7B=7^2+7^3+7^4+....+7^{2016}\)
\(7B-B=\left(7^2+7^3+7^4+...+7^{2016}\right)-\left(7+7^2+7^3+....+7^{2015}\right)\)
\(6B=7^{2016}-7\)
\(B=\dfrac{7^{2016}-7}{6}\)
\(C=4^5+4^6+4^7+...+4^{2016}\)
\(4C=4^6+4^7+4^8+...+4^{2017}\)
\(4C-C=\left(4^6+4^7+4^8+...+4^{2017}\right)-\left(4^5+4^6+4^7+...+4^{2016}\right)\)
\(3C=4^{2017}-4^5\)
\(C=\dfrac{4^{2017}-4^5}{3}\)
A = 5 + 52 + 53 + 54 + ... + 52004
5A = 52 + 53 + 54 + 55 + ... + 52005
5A - A = 52005 - 5
4A = 52005 - 5
A = (52005 - 5) : 4
B = 71 + 72 + 73 + ... + 72015
7B = 72 + 73 + 74 + ... + 72016
7B - B = 72016 - 7
6B = 72016 - 7
B = (72016 - 7) : 6
C = 45 + 46 + 47 + ... + 42016
4C = 46 + 47 + 48 + ... + 42017
4C - C = 42017 - 45
3C = 42017 - 45
C = (42017 - 45) : 3
a) 1 - 2 + 3 - 4 + 5 - 6 + .....+ 25 - 26
= (1 - 2) + (3 - 4) + (5 - 6) + .....+ (25 - 26)
= -1 + (-1) + ( -1 ) +...+ ( -1 ) {có 13 số )
= -13
b) tương tự nhé bn
Hello bạn, mk cx tên Mai nek.
\(\frac{2}{5}.\left(x-1\right)+1=\frac{3}{5}\)
\(\Rightarrow\frac{2}{5}\left(x+1\right)=\frac{3}{5}-1\)
\(\Rightarrow\frac{2}{5}\left(x+1\right)=-\frac{2}{5}\)
\(\Rightarrow x+1=-\frac{2}{5}:\frac{2}{5}\)
\(\Rightarrow x+1=-1\)
\(\Rightarrow x=-1-1\)
\(\Rightarrow x=-2\)
\(\left(\frac{2}{7}\times x+1\right)\times\left(3-\frac{1}{2}\times x\right)=0\)
\(TH1:\frac{2}{7}\times x+1=0\)
\(\frac{2}{7}\times x=-1\)
\(x=-\frac{2}{7}\)
\(TH2:3-\frac{1}{2}\times x=0\)
\(\frac{1}{2}\times x=3\)
\(x=\frac{3}{2}\)
Vậy \(x\in\left\{\frac{3}{2};-\frac{2}{7}\right\}\)
\(\frac{19}{37}+\left(1-\frac{19}{37}\right)\)
\(=\frac{19}{37}+1-\frac{19}{37}\)
\(=\left(\frac{19}{37}-\frac{19}{37}\right)+1\)
\(=0+1=1\)
\(A=1+7+7^2+7^3+...+7^{2016}\)
\(\Rightarrow7A=7\left(1+7+7^2+7^3+...+7^{2016}\right)\)
\(7A=7+7^2+7^3+7^4+...+7^{2017}\)
\(\Rightarrow7A-A=\left(7+7^2+7^3+...+7^{2017}\right)-\left(1+7+7^2+...+7^{2016}\right)\)
\(\Rightarrow6A=7^{2017}-1\)
\(\Rightarrow A=\dfrac{7^{2017}-1}{6}\)