Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1.
a.\(\left(x+4\right)\left(x^2-4x+16\right)=x^3-4^3=x^3-64\)
b.\(\left(x^2-\frac{1}{3}\right)\left(x^4+\frac{1}{3}x^2+\frac{1}{9}\right)=\left(x^2\right)^3-\left(\frac{1}{3}\right)^3=x^6-\frac{1}{27}\)
bài 2.
a.\(892^2+892.216+108^2=892^2+2.892.108+108^2\)
\(=\left(892+108\right)^2=1000^2=1_{ }000_{ }000\)
b.\(36^2+26^2-52.36=36^2+26^2-2.26.36=\left(36-26\right)^2=10^2=100\)
mk viết đáp án, ko biết biến đổi ib mk
a) \(x^3+3x^2y-9xy^2+5y^3=\left(x+5y\right)\left(x-y\right)^2\)
b) \(x^4+x^3+6x^2+5x+5=\left(x^2+5\right)\left(x^2+x+1\right)\)
c) \(x^4-2x^3-12x^2+12x+36=\left(x^2-6\right)\left(x^2-2x-6\right)\)
d) \(x^8y^8+x^4y^4+1=\left(x^2y^2-xy+1\right)\left(x^2y^2+xy+1\right)\left(x^4y^4-x^2y^2+1\right)\)
1/
a, x2+36=12x
<=>x2-12x+36=0
<=>(x-6)2=0
<=>x-6=0
<=>x=6
b, 5x(x-3)+3-x=0
<=>5x(x-3)-(x-3)=0
<=>(5x-1)(x-3)=0
<=>\(\orbr{\begin{cases}5x-1=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=3\end{cases}}}\)
2/ Sửa đề x2z2 = y2z2
Đặt \(A=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2=4x\left(x+y+z\right)\left(x+y\right)\left(x+z\right)+y^2z^2\)
\(=4\left(x^2+xy+xz\right)\left(x^2+xz+xy+yz\right)+y^2z^2\)
Đặt x2+xy+xz=t, ta có
\(A=4t\left(t+yz\right)+y^2z^2=4t^2+4tyz+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+y^2z^2\right)^2\ge0\)
a) x2 – 4 + (x – 2)2
= (x2 – 22) + (x – 2)2 = (x – 2)(x + 2) + (x – 2)2
= (x – 2) [(x + 2) + (x – 2)]
= (x – 2)(x + 2 + x – 2)
= 2x(x – 2)
b) x3 – 2x2 + x – xy2
= x(x2 – 2x + 1 – y2) = x[(x2 – 2x + 1) – y2]
= x[(x – 1)2 – y2]
= x[(x – 1) + y] [(x – 1) – y]
= x(x – 1 + y)(x – 1 – y)
c) x3 – 4x2 – 12x + 27
= (x3 + 27) – 4x(x + 3)
= (x + 3)(x2 – 3x + 9) – 4x(x + 3)
= (x + 3)(x2 – 3x + 9 – 4x)
= (x + 3)(x2 – 7x + 9)
câu a đặt chung x ra là xong
câu b
x^3 + 3x^2 - 7x^2 - 21x + 9x+ 27 còn lại tự làm nhé
a) x3 - 2x2 + x - xy2
= x (x2 - 2x + 1 - y2)
= x [(x2 - 2x + 1) - y2]
= x [(x - 1)2 - y2]
= x [(x - 1) + y] [(x - 1) - y]
= x (x - 1 + y) (x - 1 - y)
b) x3 - 4x2 - 12x + 27
= (x3 + 27) - (4x2 + 12x)
= (x3 + 33) - 4x (x + 3)
= (x + 3) (x2 - 3x + 32) - 4x (x + 3)
= (x + 3) [(x2 - 3x + 9) - 4x]
= (x + 3) (x2 - 3x + 9 - 4x)
= (x + 3) (x2 - 7x + 9)
#Học tôt!!!
~NTTH~
Phân tích đa thức thành nhân tử:
\(36-12x+x^2\)
\(=36-6x-6x+x^2\)
\(=\left(36-6x\right)-\left(6x-x^2\right)\)
\(=6\left(6-x\right)-x\left(6-x\right)\)
\(=\left(6-x\right)\left(6-x\right)=\left(6-x\right)^2\)
\(x^3+2x^2+2x+1=\left(x^3+1\right)+\left(2x^2+2x\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)
\(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27\)
\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
\(x^4+2x^3+2x^2+2x+1=x^4+x^2+2x^3+x^2+2x+1\)
\(=x^2\left(x^2+1\right)+2x\left(x^2+1\right)+\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^2+2x+1\right)\)
\(=\left(x^2+1\right)\left(x+1\right)^2\)
\(x^4-2x^3+2x-1=\left(x^4-1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+1-2x\right)=\left(x^2-1\right)\left(x-1\right)^2\)
\(x^3+2x^2+2x+1=\left(x^3+x^2\right)+\left(x^2+x\right)+\left(x+1\right)\)
\(=x^2.\left(x+1\right)+x.\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right).\left(x^2+x+1\right)\)
\(x^3-4x^2+12x-27\)
\(=\left(x^3-x^2\right)-\left(3x^2-3x\right)+\left(9x-27\right)\)
\(=x^2.\left(x-1\right)-3x.\left(x-1\right)+9.\left(x-3\right)\)
\(=\left(x-1\right).\left(x^2-3x\right)+9.\left(x-3\right)\)
\(=x.\left(x-1\right).\left(x-3\right)+9.\left(x-3\right)\)
\(=\left(x-3\right)\left[x.\left(x-1\right)+9\right]\)
Bài 3 Tính nhanh
A, 892^2+892.216+108^2 B, 36^2+26^2-52.36
=892^2+2.892.108+108^2 =36^2-52.62+26^2
=(892+108)^2
=1000^2
=1000000
Bài 4 Phân tích đa thức sau thành nhân tử
X^3-2x^2+x
5(x-y)-y(x-y)
36-12x+x^2
4x^2+12x-9
Bài 3:
\(892^2+892.216+108^2=892^2+2.892.108+108^2=\left(892+108\right)^2=1000000\)
\(36^2+26^2-52.36=36^2-2.26.36+26^2=\left(36-26\right)^2=100\)
Bài 4:
\(x^3-2x^2+x=x.\left(x^2-2x+1\right)=x.\left(x-1\right)^2\)
\(5.\left(x-y\right)-y.\left(x-y\right)=\left(5-y\right)\left(x-y\right)\)
\(36-12x+x^2=x^2-12x+36=x^2-2x.6+6^2=\left(x-6\right)^2\)
\(4x^2+12x-9=\left(2x\right)^2+2.2x.3+3^2=\left(2x+3\right)^2\)