Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)
\(\Rightarrow x=ak,y=bk,z=ck\)
Ta có:
\(\left(x+y+z\right)^2=\left(ak+bk+ck\right)^2=\left[k\left(a+b+c\right)\right]^2=\left(k.1\right)^2=k^2\) (1)
\(x^2+y^2+z^2=\left(ak\right)^2+\left(bk\right)^2+\left(ck\right)^2=a^2.k^2+b^2.k^2+c^2.k^2=\left(a^2+b^2+c^2\right).k^2=1.k^2=k^2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\left(đpcm\right)\)
a, Ta có: \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\Rightarrow a=kb;c=kd\)
Thay:
\(\frac{ab}{cd}=\frac{b^2}{d^2}\)
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\)
=> đpcm
1/ \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{a^2+c^2}{b^2+d^2}\)
2/ \(\frac{2x-31}{2x-1}=\frac{2x-1-30}{2x-1}=1-\frac{30}{2x-1}\Rightarrow30⋮\left(2x-1\right)\)
\(\Rightarrow2x-1=Ư\left(30\right)\) , mà x nguyên dương \(\Rightarrow2x-1\ge1\), \(2x-1\) lẻ
\(\Rightarrow2x-1=\left\{1;3;5;15\right\}\Rightarrow x=\left\{1;2;3;8\right\}\)
3/ \(\left\{{}\begin{matrix}2\left(x-2y\right)^{2016}\ge0\\3\left|y+\frac{1}{2}\right|\ge0\end{matrix}\right.\) \(\Rightarrow B\ge0+0-2015=-2015\)
\(\Rightarrow B_{Min}=-2015\) khi \(\left\{{}\begin{matrix}x-2y=0\\y+\frac{1}{2}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=-\frac{1}{2}\end{matrix}\right.\)
4/ Nếu \(a\ge2\Rightarrow\overline{abcd}.9\ge2000.9=18000>\overline{dcba}\) (loại)
\(\Rightarrow a=1\Rightarrow\overline{1bcd}.9=\overline{dcb1}\)
\(\Rightarrow d=9\Rightarrow\overline{1bc9}.9=\overline{9cb1}\)
\(\Rightarrow\left(1000+\overline{bc}+9\right).9=\left(9000+\overline{cb}+1\right)\)
\(\Rightarrow\overline{bc}=\overline{cb}-80\Rightarrow c\ge8\Rightarrow\left[{}\begin{matrix}c=9\\c=8\end{matrix}\right.\)
Mà \(\overline{dcba}⋮9\Rightarrow a+b+c+d⋮9\)
Nếu \(b\ge2\Rightarrow\overline{abcd}.9\ge1200.9=10800>\overline{dcba}\) (vô lý) \(\Rightarrow b< 2\)
- Với \(c=9\Rightarrow1+b+9+9=19+b⋮9\Rightarrow b=8>2\left(l\right)\)
- Với \(c=8\Rightarrow1+b+8+9=18+b⋮9\Rightarrow b=0\Rightarrow\overline{abcd}=1089\)
Thử lại: \(1089.9=9801\) (thỏa mãn)
Mình chỉ làm bài 1a, và bài 3 thôi nhé,còn lại là bạn tự làm nhé
Bài 1:
a, Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\left[\frac{a}{b}\right]^2=\left[\frac{c}{d}\right]^2=\left[\frac{a+c}{b+d}\right]^2\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{(a+c)^2}{(b+d)^2}\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{(a+c)^2}{(b+d)^2}\)
Bài 3 : Sửa đề : Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
CM : a = b = c
Cách 1 : Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
vì \(a+b+c\ne0\)
\(\frac{a}{b}=1\Rightarrow a=b;\frac{b}{c}=1\Rightarrow b=c\)
Do đó : \(a=b=c\).
Cách 2 : Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=m\), ta có : \(a=bm,b=cm,c=am\)
Do đó : \(a=bm=m(mc)=m\left[m(ma)\right]\)
\(\Rightarrow a=m^3a\Rightarrow m^3=1(a\ne0)\Rightarrow m=1\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)
Cách 3 : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{a}=\left[\frac{a}{b}\right]^3\Rightarrow1=\left[\frac{a}{b}\right]^3\Rightarrow\frac{a}{b}=1\)
Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)