Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đo các góc A,B,C lần lượt là :a,b,c
Theo đề bài ta có :
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\)và a+b+c=180*
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{180^o}{15}=12\)
\(\frac{a}{3}=12\Rightarrow a=12.3=36\)
\(\frac{b}{5}=12\Rightarrow12.5=60\)
\(\frac{c}{7}=12\Rightarrow12.7=84\)
Vậy số đo các góc A,B,C lần lượt là:36 ;60 ;84
1.a. ta có:
xoy<xoz (vì 1500>400)
=>xoy+yoz=xoz
=>tia oy nằm giữa
B.Vì oy nằm giữa nên ta có:
xoz-xoy=yoz hay 1500-400=1100
vậy xoy=1100
C.ta có:
vì xoy=400=>phân giác xoy=200 hay moy=200
vì yoz=1100=>phân giác yoz=550 hay noy=550
=>mon=200+550=750
mấy bài kia mai mik giải cho, giờ có việc goy :))
1.a
do xoy<xoz hay 400<1500=> tia oy nằm giữa 2 tia còn lại
b.
vì oy nằm giữa góc xoz nên ta có:
xoz-xoy=yoz hay1500-400=1100
vậy góc yoz = 1100
c.
vì xoy=400=>moy=200 (1)
vì yoz=1100=>noy=550 (2)
từ (1)và(2)=>mon=moy+noy hay 200+550=770
vậy mon=770
Gọi M là gđ của tia pg ở C với AB, N là gđ của tia pg ở B với AC.
*Tính góc BIC:
Xét tam giác BIC: BIC = 180 - ( IBC + ICB )
Xét tam giác ABC: A + ABC + ACB = 180 <=> A + 2IBC + 2ICB = 180 <=> A + 2(IBC + ICB) = 180
<=> IBC + ICB = (180 - α ) : 2
Từ đây em tính đc góc BIC
*Tính góc BKC:
Em nhìn vào tứ giác BICK. Trong 1 tứ giác thì tổng các góc bằng 360 độ.
Gọi 2 góc phân giác ngoài ở B là B1, B2; tương tự có C1, C2.
Ta có: ABC + B1 + B2 = 180 <=> 2IBC + 2B1 (CBK) = 180 <=> IBC + B1 = 90 <=> IBC = 90
Tương tự: ACB + C1 + C2 = 180 <=> 2ICB + 2C1 (BCK) = 180 <=> ICB + C1 = 90 <=> ICK = 90
Xét tứ giác BICK: BIC + IBK + BKC + ICK = 360
Có 3 góc rồi em sẽ tính đc BKC
*Tính góc BEC:
Xét tam giác BEK: BEC + EBK + BKC = 180
Đã có EBK và BKC => BEC
cách 2
Góc ABC + góc ACB=180 độ-α => góc IBC+góc ICB=(ABC + góc ACB)/2=(180 độ-α)/2
=> góc BIC=180 độ - (góc IBC+góc ICB)=180 độ - (180 độ-α)/2 = 90 độ+α/2
_Vì mỗi góc, tia phân giác trong luôn vuông góc với tia phân giác ngoài nên
Xét tứ giác BICK có tổng số đo các góc là 360 độ, góc B và góc C vuông
=>góc BKC=360 - (góc IBK+góc ICK) - góc BIC=360-90.2- (90 độ+α/2)=90 độ - α/2
_Góc BEC= 180 độ - góc IBK - góc BKC= 180 - 90 - (90 độ - α/2) = α/2
Gọi M là gđ của tia pg ở C với AB, N là gđ của tia pg ở B với AC.
*Tính góc BIC:
Xét tam giác BIC: BIC = 180 - ( IBC + ICB )
Xét tam giác ABC: A + ABC + ACB = 180 <=> A + 2IBC + 2ICB = 180 <=> A + 2(IBC + ICB) = 180
<=> IBC + ICB = (180 - α ) : 2
Từ đây em tính đc góc BIC
*Tính góc BKC:
Em nhìn vào tứ giác BICK. Trong 1 tứ giác thì tổng các góc bằng 360 độ.
Gọi 2 góc phân giác ngoài ở B là B1, B2; tương tự có C1, C2.
Ta có: ABC + B1 + B2 = 180 <=> 2IBC + 2B1 (CBK) = 180 <=> IBC + B1 = 90 <=> IBC = 90
Tương tự: ACB + C1 + C2 = 180 <=> 2ICB + 2C1 (BCK) = 180 <=> ICB + C1 = 90 <=> ICK = 90
Xét tứ giác BICK: BIC + IBK + BKC + ICK = 360
Có 3 góc rồi em sẽ tính đc BKC
*Tính góc BEC:
Xét tam giác BEK: BEC + EBK + BKC = 180
Đã có EBK và BKC => BEC
cách 2
Góc ABC + góc ACB=180 độ-α => góc IBC+góc ICB=(ABC + góc ACB)/2=(180 độ-α)/2
=> góc BIC=180 độ - (góc IBC+góc ICB)=180 độ - (180 độ-α)/2 = 90 độ+α/2
_Vì mỗi góc, tia phân giác trong luôn vuông góc với tia phân giác ngoài nên
Xét tứ giác BICK có tổng số đo các góc là 360 độ, góc B và góc C vuông
=>góc BKC=360 - (góc IBK+góc ICK) - góc BIC=360-90.2- (90 độ+α/2)=90 độ - α/2
_Góc BEC= 180 độ - góc IBK - góc BKC= 180 - 90 - (90 độ - α/2) = α/2
Giải
a) Xét \(\Delta ABC\) ta có :
\(\widehat{B}=\widehat{A}+\widehat{C}=180^0\) ( Định lí tổng 3 góc của 1 tam giác )
\(\widehat{B}=90^0+32^0=180^0\)
\(\widehat{B}=122^0=180^0\)
\(\widehat{B}=180^0-122^0=58^0\)
b)
Theo bài ra ta có : \(\widehat{A}:\widehat{B}:\widehat{C}=2:7:1\)
\(\Rightarrow\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{7}=\dfrac{\widehat{C}}{1}\)
Lại có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( Định lí tổng 3 góc của 1 tam giác )
Áp dụng tính chất của dãy tỉ số bằng nhau nên ta có :
\(\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{7}=\dfrac{\widehat{C}}{1}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{2+7+1}=\dfrac{180^0}{10}=18^0\)
\(+)\)\(\dfrac{\widehat{A}}{2}=18^0\Rightarrow\widehat{A}=18^0\times2=36^0\)
\(+)\)\(\dfrac{\widehat{B}}{7}=18^0\Rightarrow\widehat{B}=18^0\times7=126^0\)
\(+)\)\(\dfrac{\widehat{C}}{1}=18^0\Rightarrow\widehat{C}=18^0\times1=18^0\)
c)
Xét \(\Delta ABC\) ta có :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( Định lí trong 3 góc cùng 1 tam giác )
\(\widehat{A}+75^0+\widehat{C}=180^0\)
\(\widehat{A}+\widehat{C}=180^0-75^0\)
\(\widehat{A}+\widehat{C}=105^0\)
Theo bài ra ta có :
\(\widehat{A}:\widehat{C}=3:2\Rightarrow\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau nên ta có :
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{C}}{2}=\dfrac{\widehat{A}+\widehat{C}}{3+2}=\dfrac{105^0}{5}=21^0\)
\(+)\)\(\dfrac{\widehat{A}}{3}=21^0\Rightarrow\widehat{A}=21^0\times3=63^0\)
\(+)\)\(\dfrac{\widehat{C}}{2}=21^0\Rightarrow\widehat{C}=21^0\times2=42^0\)
Ta có : tổng các góc = 180 o
Tổng số phần của các góc là :
2 + 3 + 4 = 9 phần
Số đo của góc thứ nhất là :
\(180:9\times2=40^o\)
Số đo của góc thứ 2 là :
\(180:9\times3=60\)
Số đo của góc thứ 3 là :
\(180:9\times4=80^o\)
Đáp số : .................
Gọi các góc của tam giác đó lần lượt là A, B, C ( A, B, C \(\ne\)0 )
vì các góc của tam giác lần lượt tỉ lệ với 1, 2, 3 nên theo đề bài ta có :
\(\frac{A}{1}=\frac{B}{2}=\frac{C}{3}\) và \(A+B+C=180^o\)( định lí tổng 3 góc trong một tam giác )
Áp dụng tính chất dãy tỉ số bằng nhauta được :
\(\frac{A}{1}=\frac{B}{2}=\frac{C}{3}=\frac{A+B+C}{1+2+3}=\frac{180^o}{6}\)\(=30\)
\(\Rightarrow\hept{\frac{A}{1}=30}\Rightarrow A=30.1=30^o\)
\(\Rightarrow\hept{\frac{B}{2}=30\Rightarrow}B=30.2=60^o\)
\(\Rightarrow\hept{\frac{C}{3}=30\Rightarrow}C=30.3=90^o\)
+ Xét ΔABCΔABC có Cˆ=900(cmt)C^=900(cmt)
=> ΔABCΔABC vuông tại C(đpcm).C(đpcm).
Vậy ΔABCΔABC vuông tại C.