Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}\)
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a+3c}{2b+3d}\) và \(\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a-3c}{2b-3d}\)
\(\Rightarrow\frac{2a+3c}{2b+3d}=\frac{2a-3c}{2b-3d}\)
Tìm các số a , b , c , d ∈ N biết :
\(\frac{30}{43}=\frac{1}{a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}}\)
Cũng khá đơn giản nhưng mk ko biết cách trình bày sao cho ổn
Vì a,b,c,d \(\inℕ^∗\Rightarrow a+b+c< +b+c+d\Rightarrow\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
Tương tự
\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{a+c+d}>\frac{c}{a+b+c+d}\)
\(\frac{d}{b+c+d}>\frac{d}{a+b+c+d}\)
\(\Rightarrow M>\frac{a+b+c+d}{a+b+c+d}=1\)
Vì a,b,c,d \(\inℕ^∗\)\(\Rightarrow a+b+c>a+b\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}\)
Tương tự
\(\hept{\begin{cases}\frac{b}{a+b+d}< \frac{b}{a+b}\\\frac{c}{a+c+d}< \frac{c}{c+d}\\\frac{d}{b+c+d}< \frac{d}{a+b+c+d}\end{cases}}\)
\(\Rightarrow M< \frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)
Vậy \(1< M< 2\)nên M không là số tự nhiên
Biết a=b=c=d
Thay vào M
Ta có:
\(M=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)
\(=4.\frac{2a-a}{a+a}=4.\frac{a}{2a}=4.\frac{1}{2}=2\)