Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\left(1+abc\right)+\sqrt{2\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
\(=2\left(1+abc\right)+\sqrt{\left[\left(a+1\right)^2+\left(1-a\right)^2\right]\left[\left(b+c\right)^2+\left(bc-1\right)^2\right]}\)
\(\ge2\left(1+abc\right)+\left(a+1\right)\left(b+c\right)+\left(1-a\right)\left(bc-1\right)\)
\(=\left(1+a\right)\left(1+b\right)\left(1+c\right)\)
\(2\left(1+abc\right)+\sqrt{2\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}.\)
\(=2\left(1+abc\right)+\sqrt{\left[\left(a+1\right)^2+\left(1-a\right)^2\right]\left[\left(b+c\right)^2+\left(bc-1\right)^2\right]}\)
\(\ge2\left(1+abc\right)+\left(a+1\right)\left(b+c\right)+\left(1-a\right)\left(bc-1\right)\)
\(=\left(1+a\right)\left(1+b\right)\left(1+c\right)\)
Nhiều quá làm 1 bài tiêu biểu thôi nhé:
a/ \(A=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
\(=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)\left(ab+bc+ca+c^2\right)}\)
\(=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)\left(c+a\right)\left(b+c\right)\left(a+b\right)\left(c+a\right)\left(b+c\right)}=1\)
Giả thiết phải là \(ab+bc+ac=1\) nhé!