Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Biến đổi VT . Mẫu chung là ( a + 2b )( a - 2b )
\(VT=\frac{a+2b-6b-2\left(a-2b\right)}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 1 )
Biến đổi VP
\(-\frac{1}{2a}\left(\frac{a^2+4b^2}{a^2-4b^2}+1\right)=-\frac{1}{2a}\cdot\frac{a^2+4b^2+a^2-4b^2}{a^2-4b^2}\)
\(=-\frac{1}{2a}\cdot\frac{2a^2}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 2 )
Từ ( 1 ) và ( 2 ) => VT = VP ( đpcm )
b) \(a^3+b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)^3\)
<=> \(b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)^3=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)-a^3\)( * )
Biến đổi VT của ( * ) ta có :
\(VT=\left[b+\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right]\left[b^2-\frac{b^2\left(2a^3+b^3\right)}{a^3-b^3}+\frac{b^2\left(2a^3+b^3\right)^2}{\left(a^3-b^3\right)^2}\right]\)
\(=\frac{3a^3b}{a^3-b^3}\cdot\frac{3a^6b^2+3a^3b^5+3b^8}{\left(a^3-b^3\right)^2}\)
\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 1 )
\(VP=\left[\frac{a\left(a^3+2b^3\right)}{a^3-b^3}-a\right]\left[\frac{a^2\left(a^3+2b^3\right)^2}{\left(a^3-b^3\right)^2}+\frac{a^2\left(a^3+2b^3\right)}{a^3-b^3}+a^2\right]\)
\(=\frac{3ab^3}{a^3-b^3}\cdot\frac{3a^8+3a^5b^3+3a^2b^6}{\left(a^3-b^3\right)^2}\)
\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 2 )
Từ ( 1 ) và ( 2 ) => VT = VP => ( * ) đúng
=> Hằng đẳng thức đúng
a) \(\left(a+b+c\right)^2+a^2+b^2+c^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2\)
\(=a^2+2ab+b^2+b^2+2bc+c^2+c^2+2ca+a^2\)
\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)
b) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left(b+c\right)\left[\left(a+b+c\right)^2+\left(a+b+c\right)a+a^2\right]-\left(b+c\right)\left(b^2+bc+c^2\right)\)
\(=\left(b+c\right)\left(3a^2+3ab+3bc+3ac\right)\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
a) (a – b)3 = -(b – a)3
Biến đổi vế phải thành vế trái:
-(b – a)3= -(b3 – 3b2a + 3ba2 – a3) = - b3 + 3b2a - 3ba2 + a3
= a3 – 3a2b + 3ab2 – b3 = (a – b)3
Sử dụng tính chất hai số đối nhau:
(a – b)3 = [(-1)(b – a)]3 = (-1)3(b – a)3 = -13 . (b – a)3 = - (b – a)3
b) (- a – b)2 = (a + b)2
Biến đổi vế trái thành vế phải:
(- a – b)2 = [(-a) + (-b)]2
= (-a)2 +2 . (-a) . (-b) + (-b)2
= a2 + 2ab + b2 = (a + b)2
Sử dụng tính chất hai số đối nhau:
(-a – b)2 = [(-1) . (a + b)]2 = (-1)2 . (a + b)2 = 1 . (a + b)2 = (a + b)2
Bài giải:
a) (a – b)3 = -(b – a)3
Biến đổi vế phải thành vế trái:
-(b – a)3= -(b3 – 3b2a + 3ba2 – a3) = - b3 + 3b2a - 3ba2 + a3
= a3 – 3a2b + 3ab2 – b3 = (a – b)3
Sử dụng tính chất hai số đối nhau:
(a – b)3 = [(-1)(b – a)]3 = (-1)3(b – a)3 = -13 . (b – a)3 = - (b – a)3
b) (- a – b)2 = (a + b)2
Biến đổi vế trái thành vế phải:
(- a – b)2 = [(-a) + (-b)]2
= (-a)2 +2 . (-a) . (-b) + (-b)2
= a2 + 2ab + b2 = (a + b)2
Sử dụng tính chất hai số đối nhau:
(-a – b)2 = [(-1) . (a + b)]2 = (-1)2 . (a + b)2 = 1 . (a + b)2 = (a + b)2
1. biến đổi vế trái
= a2x2 + a2y2 + b2x2 + b2y2
= (ax -by)2 + (bx+ ay)2 - 2abxy + 2abxy
= (ax -by)2 + ( bx + ay)2 = vế phải( dpcm)
Định đi ngủ mà chợt nhớ lúc chiều có hứa là làm giúp chủ tus nên h phải làm =)))
a ) \(VT=\left(2x+3\right)\left(4x^2+9\right)\left(2x-3\right)\)
\(=\left[\left(2x+3\right)\left(2x-3\right)\right]\left(4x^2+9\right)\)
\(=\left(4x^2-9\right)\left(4x^2+9\right)\)
\(=16x^4-81=VP\left(đpcm\right)\)
b ) \(VT=\left(a+b\right)^2+2\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\)
\(=\left(a+b+a-b\right)^2\)
\(=\left(2a\right)^2=4a^2=VP\left(đpcm\right)\)
a ) \(VT=a\left(1-b\right)+a\left(a^2-1\right)\)
\(=a-ab+a^3-a\)
\(=a^3-ab\)
\(=a\left(a^2-b\right)=VP\left(đpcm\right)\)
b ) \(VP=a^3+b^3+c^3-3abc\)
\(=\left(a^3+b^3+3a^2b+3b^2a\right)+c^3-3abc-3a^2b-3b^2a\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\right]\)
\(=\left(a+b+c\right)\left[a^2+2ab+b^2-ac-bc+c^2-3ab\right]\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=VP\left(đpcm\right)\)
a. \(2\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Leftrightarrow2a^2+2b^2=a^2+b^2-2ab\)
\(\Leftrightarrow a^2+b^2=-2ab\)
\(\Leftrightarrow a^2+2ab+b^2=0\)
\(\Leftrightarrow\left(a+b\right)^2=0\)
\(\Leftrightarrow a+b=0\Leftrightarrow a=-b\) (đpcm)
b. \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Vì \(\left(a-1\right)^2;\left(b-1\right)^2;\left(c-1\right)^2\ge0\)
\(\Rightarrow\left(a-1\right)^2=\left(b-1\right)^2=\left(c-1\right)^2=0\)
\(\Leftrightarrow a-1=b-1=c-1=0\Leftrightarrow a=b=c=1\)
c. \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Tương tự câu b ta có a = b = c