K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2019

Thực hiện phép nhân đa thức với đa thức ở vế trái

a) VT = 3 u 2  + 9u + 27 – ( u 3  – 32 u 2  + 9u) = 27 –  u 3  = VP (đpcm).

b) VT = ( t 2  – 4)( t 2  + 4) =  t 4  – 16 = VP. (đpcm).

2 tháng 12 2017

Câu 1:

\(\dfrac{2^{35}.45^{25}.13^{22}.35^{16}}{9^{26}.65^{22}.28^{17}.25^9}\)

\(=\dfrac{2^{35}.9^{25}.5^{25}.13^{22}.7^{16}.5^{16}}{9^{26}.13^{22}.5^{22}.2^{17}.2^{17}.7^{17}.5^9.5^9}\)

Bạn rút gọn sẽ còn lại:

\(=\dfrac{2.5}{7.9}=\dfrac{10}{63}\)

2 tháng 12 2017

Câu 4:

\(K=\left(x^2y-3\right)^2-\left(2x-y\right)^3+xy^2\left(6-x^3\right)+8x^3-6x^2y-y^3\)\(K=\left(x^2y\right)^2-2.x^2y.3+3^2-\left[\left(2x\right)^3-3.\left(2x\right)^2.y+3.2x.y^2-y^3\right]+6xy^3-x^4y^2+8x^3-6x^2y-y^3\)\(K=x^4y^2-6x^2y+9-8x^3+12x^2y-6xy^2+y^3+6xy^2-x^4y^2+8x^3-6x^2y-y^3\)\(K=9\)

Câu 1:

\(\left(x^2+2x+4\right)\left(x-2\right)=x^3-8\)

Câu 3:

a) \(\dfrac{7x-4}{x-1}-\dfrac{5x-2}{x-1}=\dfrac{7x-4-5x+2}{x-1}=\dfrac{2\left(x-1\right)}{x-1}=2\)

b) \(\dfrac{10x}{27y^2}:\dfrac{5x^3}{9xy}=\dfrac{10x}{27y^2}\cdot\dfrac{9xy}{5x^3}=\dfrac{90x^2y}{135x^3y^2}=\dfrac{2}{3xy}\)

Câu 4:

a) \(x^2\left(x-3\right)-4x+12\)

\(=x^2\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-4\right)\)

\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

b) \(a^2-2ab+b^2-9\)

\(=\left(a-b\right)^2-3^2\)

\(=\left(a-b-3\right)\left(a-b+3\right)\)

c) \(6x^3+18x^2y+18xy^2+6y^3\)

\(=6\left(x^3+3x^2y+3xy^2+y^3\right)\)

\(=6\left(x+y\right)^3\)

Bài 5:

a) Phân thức P có giá trị xác định khi

\(x^2-3x\ne0\Rightarrow x\left(x-3\right)\ne0\)

\(\Rightarrow\left\{{}\begin{matrix}x\ne0\\x-3\ne0\Rightarrow x\ne3\end{matrix}\right.\)

b) \(P=\dfrac{4x-12}{x^2-3x}=\dfrac{4\left(x-3\right)}{x\left(x-3\right)}=\dfrac{4}{x}\)

Với \(x\ne0,x\ne3\) thì P = 4

\(\Rightarrow\dfrac{4}{x}=4\Rightarrow x=16\)

26 tháng 12 2017

Câu 1:Tính

\(\left(x^2+2x+4\right).\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+2x+4\right)\)

\(=x^3-8\)

Câu 2:tính

a,\(\dfrac{7x-4}{x-1}-\dfrac{5x-2}{x-1}=\dfrac{7x-4-5x+2}{x-1}=\dfrac{2x-2}{x-1}=\dfrac{2\left(x-1\right)}{x-1}=2\)

\(b,\dfrac{10x}{27y^2}:\dfrac{5x^3}{9xy}=\dfrac{10x}{27y^2}.\dfrac{9xy}{5x^3}=\dfrac{2}{3xy}\)

Câu 3:Phân tích các đa thức sau thành nhân tử

\(a,x^2\left(x-3\right)-4x+12\)

\(=x^2\left(x-3\right)-\left(4x-12\right)\)

\(=x^2\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-4\right)\)

\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

\(b,a^2-2ab+b^2-9\)

\(=\left(a^2-2ab+b^2\right)-3^2\)

\(=\left(a-b\right)^2-3^2\)

\(=\left(a-b-3\right)\left(a-b+3\right)\)

\(c,6x^3+18x^2y+18xy^2+6y^3\)

\(=6\left(x^3+3x^2y+3xy^2+y^3\right)\)

\(=6\left(x+y\right)^3\)

Còn câu cuối lát mk lm nốt , bh mk bận nha bn .

25 tháng 12 2017

Bài 1:

a) \(\left(x+2\right)^2-x^2+4=0\)

\(\Leftrightarrow\left(x+2\right)^2-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+2-x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+4\right)=0\)

\(\Leftrightarrow x+2=0\) hoặc \(x+4=0\)

\(\Leftrightarrow x=-2\) hoặc \(x=-4\)

b) \(2x^3+\dfrac{3}{2}x^2=0\)

\(\Leftrightarrow x^2\left(2x+\dfrac{3}{2}\right)=0\)

\(\Leftrightarrow x^2=0\) hoặc \(2x+\dfrac{3}{2}=0\)

\(\Leftrightarrow x=0\) hoặc \(x=-\dfrac{3}{4}\)

25 tháng 12 2017

bài 1

a) (x+2)2-x2+4=0

\(\Leftrightarrow\)x2+4x+4-x2+4=0

\(\Leftrightarrow\)4x+8=0

\(\Leftrightarrow\) 4(x+2)=0

=>x+2=0

\(\Leftrightarrow\)x=-2

vậy x=-2

b) \(2x^3+\dfrac{3}{2}x^2=0\)

\(\Leftrightarrow x^2\left(2x+\dfrac{3}{2}\right)=0\)

=>\(\left[{}\begin{matrix}x^2=0\\2x+\dfrac{3}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\-\dfrac{3}{4}\end{matrix}\right.\)

vậy x=0 hoặc x=-\(\dfrac{3}{4}\)

16 tháng 12 2018

Câu 1:

a/ (-5x3)(2x2+3x-5)

=-10x5-15x4+25x3

b/(2x-1)x

=2x2-x

c/(x-y)(3x2+4xy)

=3x3+4x2y-3x2y-4xy2

=3x3 +x2y-4xy2

Câu 2:

a/ x3-2x2+x

=x(x2-2x+1)

=x(x-1)2

b/x2-x-12

=x2 +3x-4x-12

=(x2 +3x)+(-4x-12)

=x(x+3)-4(x+3)

=(x+3)(x-4)

c/ 2x-6

=2(x-3)

e/ x2+4x+4-y2

=(x2+4x+4)-y2

=(x+2)2-y2

=(x+2-y)(x+2+y)

d/ x2-2xy+y2-16

=(x2-2xy+y2)-16

=(x-y)2-16

=(x-y-4)(x-y+4)

Câu 3:

a: \(=\dfrac{5xy-4+3xy+4}{2x^2y^3}=\dfrac{8xy}{2x^2y^3}=\dfrac{4}{xy^2}\)

b: \(=\dfrac{y-12}{6\left(y-6\right)}+\dfrac{6}{y\left(y-6\right)}\)

\(=\dfrac{y^2-12y+36}{6y\left(y-6\right)}=\dfrac{y-6}{6y}\)

c: \(=\dfrac{3x+1-2x+3}{x+y}=\dfrac{x+4}{x+y}\)

d: \(=\dfrac{4x+7+5x+7}{9}=\dfrac{9x+14}{9}\)

e: \(=\dfrac{5\left(x+2\right)}{2\left(2x-1\right)}\cdot\dfrac{-2\left(x-2\right)}{x+2}=\dfrac{-5\left(x-2\right)}{2x-1}\)

Câu 1:

a. \(\frac{1}{4}x^2-64\)

\(=\left(\frac{1}{2}x\right)^2-8^2\)

\(=\left(\frac{1}{2}x+8\right)\left(\frac{1}{2}x-8\right)\)

b. \(\frac{1}{27}+x^3\)

\(=\left(\frac{1}{3}\right)^3+x^3\)

\(=\left(\frac{1}{3}+x\right)\left(\frac{1}{9}-\frac{1}{3}x+x^2\right)\)

c. \(\left(a+b\right)^3-\left(a-b\right)^3\)

\(=\left(a^3+3a^2b+3ab^2+b^3\right)-\left(a^3-3a^2b+3ab^2-b^3\right)\)

\(=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b+3ab^2+b^3\)

\(=6a^2b+2b^3\)

\(=2b\left(3a^2+b^2\right)\)

10 tháng 10 2020

câu 3:

732-272=(73-27)(73+27)=46.100=4600

10 tháng 2 2020

Bài 1 :

ĐKXĐ : \(2-x\ne0\)

=> \(x\ne2\)

Ta có :\(\frac{4x+1}{4\left(2-x\right)}\ge x+2\)

=> \(4x+1\ge4\left(x+2\right)\left(2-x\right)\)

=> \(4x+1\ge4\left(4-x^2\right)\)

=> \(4x+1\ge16-4x^2\)

=> \(4x^2+4x-15\ge0\)

=> \(4x^2+10x-6x-15\ge0\)

=> \(4x\left(x-1,5\right)+10\left(x-1,5\right)\ge0\)

=> \(\left(4x+10\right)\left(x-1,5\right)\ge0\)

=> \(\left[{}\begin{matrix}4x+10\ge0\\x-1,5\ge0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x\ge-\frac{5}{2}\\x\ge\frac{3}{2}\end{matrix}\right.\)

=> \(x\ge\frac{3}{2}\)

Vậy tập nghiệm của bất phương trình trên là \(S=\left\{x|x\ge\frac{3}{2}\right\}\) .

10 tháng 2 2020

Bài 2:

Ta có: \(\left(a+b\right)\left(a^4+b^4\right)\ge\left(a^2+b^2\right)\left(a^3+b^3\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a^4+b^4\right)-\left(a^2+b^2\right)\left(a^3+b^3\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^4+b^4\right)-\left(a^2+b^3\right)\left(a+b\right)\left(a^2-ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left[a^4+b^4-\left(a^2+b^2\right)\left(a^2-ab+b^2\right)\right]\ge0\)

\(\Leftrightarrow\left(a+b\right)\left[a^4+b^4-a^4+a^3b-a^2b^2-a^2b^2+ab^3-b^4\right]\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^3b+ab^3-a^2b^2\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)ab\left(a^2+b^2-2ab\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)ab\left(a-b\right)^2\ge0\)

BĐT luôn đúng vì \(a>0;b>0\)\(\left(a-b\right)^2\ge0\forall a,b\)

Vậy ta có điều phải chứng minh.

Cũng chẳng biết có đánh lộn chỗ nào không nữa. Lần sau chia nhỏ ra.

21 tháng 12 2019
https://i.imgur.com/u2NWDkL.jpg
21 tháng 12 2019
https://i.imgur.com/Ls5Q93L.jpg
26 tháng 4 2020

Giúp bạn câu 1 thôi (Mình lười lắm)

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

Chúc bn học tốt!!

26 tháng 4 2020

Nguyễn Lê Phước Thịnh câu 1 chưa cộng vào kìa

1 tháng 11 2018

2.

\(\left(a\right)x^2+4y^2-4xy\)

\(\Rightarrow\left(x-2y\right)^2\)

\(\left(b\right)\left(x-4\right)^2+\left(x-4\right)\)

\(\Rightarrow\left(x-4\right)\left(x+5\right)\)

3.

\(x\left(x+1\right)-y\left(x+1\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x+1\right)\)

Thay x,y........

\(\Rightarrow\left(2010-2011\right)\left(2010+1\right)\)

\(=-2011\)

1 tháng 11 2018

\(x^2+y^2=x^2+2xy+y^2-2xy=\left(x+y\right)^2-2xy\)

Thay \(x+y=-8\&xy=15\) ta được:

\(\left(x+y\right)^2-2xy=\left(-8\right)^2-2.15=64-30=34\)