Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dựa vào giản đồ xét tam giác vuông OAB có
\(\sin60=\frac{Uc}{U_{ }AB}\Rightarrow U_C=100.\sin60=50\sqrt{3}V\Rightarrow Z_C=\frac{U_C}{I}=\frac{50\sqrt{3}}{0.5}=100\sqrt{3}\Omega\)
=> \(C=\frac{1}{Z_C.\omega}\)
\(\cos60=\frac{U_R}{U_{AB}}\Rightarrow U_R=50\Omega\Rightarrow R=\frac{U_R}{I}=100\Omega\)
2. Công suất trên mạch có biểu thức
\(P=I^2R=\frac{U^2}{R^2+\left(Z_L-Z_C\right)^2}.R\\=\frac{U^2}{R^{ }+\frac{\left(Z_L-Z_C\right)^2}{R}}\)
L thay đổi để P max <=> Mẫu Min => áp dụng bất đẳng thức cô-si cho hai số không âm=> \(R=\left|Z_L-Z_C\right|\)
=> \(R=100-40=60\Omega\)
=>
Lời giải:
Khi $f=f_1$
$\Rightarrow \sqrt{r^{2}+Z_{L}^{2}}=100$
Mặt khác, khi C biến thiên để $U_{C_{max}}$
$\Rightarrow Z_{C}=\dfrac{r^{2}+Z_{L}^{2}}{Z_{L}}\Leftrightarrow \dfrac{L}{C}=r^{2}+Z_{L}^{2}=100^{2}\left(1\right)$
Khi $f=f_2$
Mạch xảy ra cộng hưởng:
$\Rightarrow LC=\dfrac{1}{\left(200\pi \right)^{2}}\left(2\right)$
Lấy $\left(1\right).\left(2\right)$:
$\Rightarrow L^{2}=\dfrac{1}{4\pi ^{2}}\Rightarrow L=\dfrac{1}{2\pi }\left(H\right)$
Hướng dẫn:
\(U_{AB}=U_C=2\) (1)
\(U_{BC}^2=U_r^2+U_L^2=3\) (2)
\(U_{AC}^2=U_r^2+(U_L-U_C)^2=1\) (3)
Giải hệ 3 pt trên sẽ tìm đc \(U_r\) và \(U_L\)
Chia cho \(I\) sẽ tìm được \(r\) và \(Z_L\)
Ta có: cos φ = 2 m − 1 m = 1 3 ⇒ m ≈ 0 , 55
→ Với m = f C f L = f 0 f 0 + 5 6 = 0 , 55 → S H I F T + S O L V E f 0 = 15 Hz
Đáp án B
Bài toán này bạn chỉ cần quan tâm đến phương án D là đúng thôi, vì để chứng minh B, C sai thì lại tương đối phức tạp, không cần thiết.
Theo giả thiết uC trễ pha pi/2 so vơi u --> u cùng pha với i --> Cộng hưởng, cường độ dòng điện đạt cực đại.
Vậy khi tăng f thì cường độ I giảm.
Chọn D.
Đáp án C
Khi ω = ω1 thì
Khi ω = ω2 thì
Khi ω = ω0 thì
Thay (1) và (3) và (2) ta thu được