Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(\(\dfrac{1}{3}-\dfrac{1}{3}\))\(+\left(\dfrac{3}{5}+\left(\dfrac{-3}{5}\right)\right)+\left(\dfrac{-5}{7}+\dfrac{5}{7}\right)+\left(\dfrac{-7}{9}+\dfrac{7}{9}\right)\)\(+\left(\dfrac{-11}{13}-\dfrac{9}{11}\right)\)
A\(=0+0+0+0+\dfrac{-238}{143}\)
A\(=\dfrac{-238}{143}\)
\(B=\left(1+\dfrac{1}{2}\right)+\left(1+\dfrac{1}{4}\right)+\left(1+\dfrac{1}{8}\right)+\left(1+\dfrac{1}{32}\right)+\left(1+\dfrac{1}{64}\right)-7\)
\(B=\left(1+1+1+1+1\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\right)-7\)
\(B=6+\dfrac{63}{64}-7\)
\(B=-1+\dfrac{63}{64}\)
\(B=\dfrac{-1}{64}\)
a: 2x(x-1/7)=0
=>x(x-1/7)=0
=>x=0 hoặc x=1/7
b: \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}=\dfrac{8}{20}-\dfrac{15}{20}=\dfrac{-7}{20}\)
nên \(x=\dfrac{-1}{4}:\dfrac{7}{20}=\dfrac{-20}{4\cdot7}=\dfrac{-5}{7}\)
c: \(\Leftrightarrow\dfrac{41}{9}:\dfrac{41}{18}-7< x< \left(3.2:3.2+\dfrac{45}{10}\cdot\dfrac{31}{45}\right):\left(-21.5\right)\)
\(\Leftrightarrow2-7< x< \dfrac{\left(1+3.1\right)}{-21.5}\)
\(\Leftrightarrow-5< x< \dfrac{-41}{215}\)
mà x là số nguyên
nên \(x\in\left\{-4;-3;-2;-1\right\}\)
\(LINH=\dfrac{3}{1^2.2^2}+\dfrac{7}{3^2.4^2}+\dfrac{11}{5^2.6^2}+\dfrac{15}{7^2.8^2}+\dfrac{19}{9^2.10^2}\)
\(LINH=\dfrac{1+2}{1^2.2^2}+\dfrac{3+4}{3^2.4^2}+\dfrac{5+6}{5^2.6^2}+\dfrac{7+8}{7^2.8^2}+\dfrac{9+10}{9^2.10^2}\)
\(LINH=\dfrac{1}{1^2.2^2}+\dfrac{2}{1^2.2^2}+\dfrac{3}{3^2.4^2}+\dfrac{4}{3^2.4^2}+\dfrac{5}{5^2.6^2}+\dfrac{6}{5^2.6^2}+\dfrac{7}{7^2.8^2}+\dfrac{8}{7^2.8^2}+\dfrac{9}{9^2.10^2}+\dfrac{10}{9^2.10^2}\)
\(LINH=\dfrac{1}{1.2^2}+\dfrac{1}{1^2.2}+\dfrac{1}{3.4^2}+\dfrac{1}{3^2.4}+\dfrac{1}{5.6^2}+\dfrac{1}{5^2.6}+\dfrac{1}{7.8^2}+\dfrac{1}{7^2.8}+\dfrac{1}{9.10^2}+\dfrac{1}{9^2.10}\)\(LINH=\dfrac{1}{4}+\dfrac{1}{2}+\dfrac{1}{48}+\dfrac{1}{36}+\dfrac{1}{180}+\dfrac{1}{150}+\dfrac{1}{448}+\dfrac{1}{392}+\dfrac{1}{900}+\dfrac{1}{810}\)Vì:
\(\left\{{}\begin{matrix}\dfrac{1}{48}< \dfrac{1}{32}\\\dfrac{1}{36}< \dfrac{1}{32}\\...............\\\dfrac{1}{810}< \dfrac{1}{32}\end{matrix}\right.\)
Nên:
\(\dfrac{1}{48}+\dfrac{1}{36}+.....+\dfrac{1}{810}< \dfrac{1}{32}+\dfrac{1}{32}+....+\dfrac{1}{32}\)
\(\Rightarrow\dfrac{1}{48}+\dfrac{1}{36}+....+\dfrac{1}{810}< \dfrac{1}{32}.8=\dfrac{1}{4}\)
Nên:
\(LINH=\dfrac{1}{4}+\dfrac{1}{2}+\dfrac{1}{48}+\dfrac{1}{36}+....+\dfrac{1}{810}< \dfrac{1}{4}+\dfrac{1}{2}+\dfrac{1}{4}=1\)
Nên \(LINH< 1\left(đpcm\right)\)
1
A)Z ; Q B)Q C)Q D)Q E)N ; Z ; Q
2
A)> B)< C)< D)<
Lời giải :
a ) \(1\dfrac{4}{23}+\dfrac{5}{21}-\dfrac{4}{23}+0,5+\dfrac{16}{21}\)
\(=\left(1\dfrac{4}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+0,5\)
\(=2,5\)
b ) \(\dfrac{3}{7}.19\dfrac{1}{3}-\dfrac{3}{7}.33\dfrac{1}{3}\)
\(=\dfrac{3}{7}\left(19\dfrac{1}{3}-33\dfrac{1}{3}\right)\)
\(=\dfrac{3}{7}\left(19-33\right)\)
\(=\dfrac{3}{7}\left(-14\right)\)
\(=-6\)
c ) \(9\left(-\dfrac{1}{3}\right)^3+\dfrac{1}{3}\)
\(=9\left(-\dfrac{1}{27}\right)+\dfrac{1}{3}\)
\(=-\dfrac{1}{3}+\dfrac{1}{3}\)
\(=0\)
d ) \(15\dfrac{1}{4}\div\left(-\dfrac{5}{7}\right)-25\dfrac{1}{4}\div\left(-\dfrac{5}{7}\right)\)
\(=\left(15\dfrac{1}{4}-25\dfrac{1}{4}\right)\div\left(-\dfrac{5}{7}\right)\)
\(=-10\left(-\dfrac{7}{5}\right)\)
\(=14\)
huhuuu
k