Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này mình thấy quen quen, hình như ai đó dang và có người trả lời rồi, bạn nên tìm câu hỏi tương tự
\(\dfrac{1}{2}+\dfrac{1}{n}>\dfrac{1}{4}+\dfrac{2}{5}\Leftrightarrow\dfrac{1}{2}+\dfrac{1}{n}>0,65\)
\(\Leftrightarrow\dfrac{1}{n}>\dfrac{3}{20}\Leftrightarrow\dfrac{20}{20n}>\dfrac{3n}{20n}\Rightarrow20>3n\Rightarrow n< 7\)
vậy n = 6
\(\dfrac{1}{2}+\dfrac{1}{n}>\dfrac{1}{4}+\dfrac{2}{5}\\\)
<=> \(0.5+\dfrac{1}{n}>0.25+0.4\) <=> \(0.5+\dfrac{1}{n}>0.65\) <=> 1/n >0.15 <=>n=6
Chi tiết, và chuẩn đúng toán học. " dãy số hiểu n thuộc N*"
*)với n=1 ta có: \(A=\dfrac{1}{1+1}=\dfrac{1}{2}=B\)
*) với n>1 ta có: \(\dfrac{1}{n+1}>\dfrac{1}{2n}\) {c/m: không quá khó bỏ qua}. áp vào từng số hạng VT:
vậy ta có:\(A=\left(\dfrac{1}{n+1}+..+\dfrac{1}{2n}\right)>n.\dfrac{1}{2n}=\dfrac{1}{2}=B=VP\)
Kết luận:
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}n=1\\A=B\end{matrix}\right.\\\left\{{}\begin{matrix}n\ne1\\A>B\end{matrix}\right.\end{matrix}\right.\) hoặc \(KL:A\ge B..\forall n\in N^o\)
Ta có: \(A=\dfrac{1}{n+1}+\dfrac{1}{n+2}+...+\dfrac{1}{2n}>\dfrac{1}{2n}+\dfrac{1}{2n}+...+\dfrac{1}{2n}=\dfrac{n}{2n}=\dfrac{1}{2}\)
Vậy \(A>B\)
a) \(x^2-10x=-25\)
\(\Leftrightarrow x^2-10x+25=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
\(\Leftrightarrow x=5\)
b) \(\dfrac{x+4}{2000}+\dfrac{x+8}{1996}=\dfrac{x+12}{1992}+\dfrac{x+16}{1988}\)
\(\Leftrightarrow\dfrac{x+4}{2000}+1+\dfrac{x+8}{1996}+1=\dfrac{x+12}{1992}+1+\dfrac{x+16}{1988}+1\)
\(\Leftrightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{1996}-\dfrac{x+2004}{1992}-\dfrac{x+2004}{1988}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{1996}-\dfrac{1}{1992}-\dfrac{1}{1988}\right)=0\)
\(\Leftrightarrow x+2004=0\)(vì \(\dfrac{1}{2000}+\dfrac{1}{1996}-\dfrac{1}{1992}-\dfrac{1}{1988}\ne0\))
\(\Leftrightarrow x=-2004\)
a, \(2x-x^2=x\left(2-x\right)\)
\(MC=x\left(2-x\right)\left(x+2\right)\)
\(\dfrac{1}{x+2}=\dfrac{x\left(2-x\right)}{x\left(2-x\right)\left(x+2\right)}\);\(\dfrac{8}{2x-x^2}=\dfrac{8\left(x+2\right)}{x\left(2-x\right)\left(x+2\right)}\)
b,
MC : \(x^2-1\)
\(x^2+1=\dfrac{\left(x^2+1\right)\left(x^2-1\right)}{x^2-1}=\dfrac{x^4-1}{x^2-1}\) ; \(\dfrac{x^4}{x^2-1}\)
\(\left(\dfrac{2}{1+2x}+\dfrac{4x^2+1}{4x^2-1}-\dfrac{1}{1-2x}\right):\dfrac{2}{4x^2-1}\)
\(=\left(\dfrac{2\left(1-2x\right)}{\left(1+2x\right)\left(1-2x\right)}+\dfrac{-\left(4x^2+1\right)}{\left(1-2x\right)\left(1+2x\right)}-\dfrac{1\left(1+2x\right)}{\left(1+2x\right)\left(1-2x\right)}\right)\cdot\dfrac{4x^2-1}{2}\)
\(=\left(\dfrac{2-4x-4x^2-1-1-2x}{\left(1+2x\right)\left(1-2x\right)}\right)\cdot\dfrac{\left(1-2x\right)\left(1+2x\right)}{-2}\)
\(=\left(\dfrac{-4x^2-6x}{\left(1+2x\right)\left(1-2x\right)}\right)\cdot\dfrac{\left(1-2x\right)\left(1+2x\right)}{-2}\)
\(=\dfrac{-2x\left(2x+3\right)\left(1-2x\right)\left(1+2x\right)}{\left(1+2x\right)\left(1-2x\right)\cdot\left(-2\right)}\)
\(=\dfrac{x\left(2x+3\right)}{1}\)
\(=x\left(2x+3\right)\)
Để A = 2 thì \(x\left(2x+3\right)=2=1\cdot2=2\cdot1=\left(-1\right)\cdot\left(-2\right)=\left(-2\right)\cdot\left(-1\right)\)
Ta có bảng :
x | 1 | 2 | -1 | -2 |
2x+3 | 2 | 1 | -2 | -1 |
x1 | 1 | 2 | -1 | -2 |
x2 | -0,5 | -1 | -2,5 | -2 |
Ta thấy chỉ có x = -2 và 2x + 3 = -1 thì x1 và x2 mới bằng nhau và bằng -2
Vậy x = -2 thì A = 2
g: =>12x+1>=36x+12-24x-3
=>12x+1>=12x+9(loại)
h: =>6(x-1)+4(2-x)<=3(3x-3)
=>6x-6+8-4x<=9x-9
=>2x+2<=9x-9
=>-7x<=-11
=>x>=11/7
i: =>4x^2-12x+9>4x^2-3x
=>-12x+9>-3x
=>-9x>-9
=>x<1
\(\Leftrightarrow3x+6+x^2-3x+2=9\)
\(\Leftrightarrow x^2+8=9\)
hay \(x\in\left\{1;-1\right\}\)
ĐKXĐ:\(x\ne\pm2\)
\(\dfrac{3}{x-2}+\dfrac{x-1}{x+2}=\dfrac{9}{x^2-4}\\ \Leftrightarrow\dfrac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{9}{\left(x-2\right)\left(x+2\right)}=0\\ \Leftrightarrow\dfrac{3\left(x+2\right)+\left(x-1\right)\left(x-2\right)-9}{\left(x-2\right)\left(x+2\right)}=0\\ \Rightarrow3\left(x+2\right)+\left(x-1\right)\left(x-2\right)-9=0\\ \Leftrightarrow3x+6+x^2-x-2x+2-9=0\\ \Leftrightarrow x^2-1=0\\ \Leftrightarrow\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
Sửa đề: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2+3x+2-5x+10-12-x^2+4=0\)
\(\Leftrightarrow-2x+4=0\)
\(\Leftrightarrow-2x=-4\)
hay x=2(loại)
Vậy: \(S=\varnothing\)
\(\Leftrightarrow\) \(\dfrac{x+1}{x+2}-\dfrac{5}{x+2}-\dfrac{12}{\left(x+2\right)\left(x-2\right)}-1=0\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{12}{\left(x+2\right)\left(x-2\right)}-\dfrac{\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=0\) 0
\(\Leftrightarrow x^2+x-2x-2-5x+10-12-x^2+4=0\)\(\Leftrightarrow\)\(-6x=0\Leftrightarrow x=0\)