Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐKXĐ:x\ne2;x\ne4\)
\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=-1\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x-4\right)+\left(x-2\right)^2}{\left(x-2\right)\left(x-4\right)}=-1\)
\(\Leftrightarrow\frac{x^2-7x+12+x^2-4x+4}{x^2-6x+8}=-1\)
\(\Leftrightarrow2x^2-11x+16=-x^2+6x-8\)
\(\Leftrightarrow3x^2-17x+24=0\)
\(\Leftrightarrow\left(x-3\right)\left(3x-8\right)=0\)
\(\Leftrightarrow x=3;x=\frac{8}{3}\)
Vậy tập nghiệm của phương trình là \(S=\left\{3;\frac{8}{3}\right\}\)
\(\frac{3x^2-7x+5}{x^2-x-x}-x+\frac{1}{x+1}< 0\Leftrightarrow\frac{x^2-6x+11}{\left(x-2\right)\left(x+1\right)}< 0\Leftrightarrow\frac{\left(x-3\right)^2+2}{\left(x-2\right)\left(x+1\right)}< 0\)
=> (x-2)(x+1)<0 ( vì (x-3)^2+2>0 lđ)
lại có x+1>x-2 => x-2<0 và x+1>0
=> -1<x<2
học tốt
Cho mình làm lại nha:
\(\frac{3x^2-7x+5}{\left(x+1\right)\left(x-2\right)}< \frac{2x+2-1}{x+1}.\)
\(\Leftrightarrow\frac{3x^2-7x+5}{\left(x+1\right)\left(x-2\right)}-\frac{2x+1}{x+1}< 0.\)
\(\Leftrightarrow\frac{3x^2-7x+5-\left(2x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}< 0.\)
\(\Leftrightarrow\frac{3x^2-7x+5-2x^2+4x-x+2}{\left(x+1\right)\left(x-2\right)}< 0.\)
\(\Leftrightarrow\frac{x^2-4x+4+3}{\left(x+1\right)\left(x-2\right)}< 0.\)
\(\Leftrightarrow\frac{\left(x-2\right)^2+3}{\left(x+1\right)\left(x-2\right)}< 0\Leftrightarrow\left(x+1\right)\left(x-2\right)< 0.\)
ta có x+1>x-2 => x+1>0;x-2<0 => -1<x<2
đọc lộn xíu xin lỗi nha
học tốt
Anh ko ghi lại đề nha em gái !
\(\Leftrightarrow\frac{\left(\frac{10x-4+5x}{5}\right)}{15}=\frac{\left(\frac{14x-x+3}{2}\right).x}{5}+1\)
\(\Leftrightarrow\frac{\left(\frac{15x-4}{5}\right)}{15}=\frac{\left(\frac{13x^2+3x}{2}\right)}{5}+1\)
\(\Leftrightarrow\frac{\left(\frac{15x-4}{5}\right)}{15}=\frac{\left(\frac{39x^2+9x}{2}\right)+15}{15}\)
\(\Leftrightarrow\frac{15x-4}{5}=\frac{39x^2+9x+30}{2}\)
\(\Leftrightarrow2.\left(15x-4\right)=5.\left(39x^2+9x+30\right)\)
\(\Leftrightarrow30x-8=195x^2+45x+150\)
\(\Leftrightarrow-195x^2-15x-158=0\)
\(\left(a=-195;b=-15;c=-158\right)\)
\(\Delta=b^2-4ac\)
\(=\left(-15\right)^2-4.\left(-195\right).\left(-158\right)=-123015< 0\)
Vì \(\Delta< 0\) nên phương trình vô nghiệm.
Nếu có gì thắc mắc về bài này cứ hỏi anh !
b) \(x^2+6x+9=144\)
\(\Leftrightarrow\left(x+3\right)^2=12^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=12\\x+3=-12\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-15\end{matrix}\right.\)
b, Ta có : \(x^2+6x+9=144\)
=> \(\left(x+3\right)^2=12^2\)
=> \(\left[{}\begin{matrix}x+3=12\\x+3=-12\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=9\\x=-15\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{9,-15\right\}\)
c, Ta có : \(\frac{2-x}{2016}-1=\frac{1-x}{2017}-\frac{x}{2018}\)
=> \(\frac{2-x}{2016}-1=\frac{1-x}{2017}+\frac{-x}{2018}\)
=> \(\frac{2-x}{2016}+1=\frac{1-x}{2017}+1+\frac{-x}{2018}+1\)
=> \(\frac{2-x}{2016}+\frac{2016}{2016}=\frac{1-x}{2017}+\frac{2017}{2017}+\frac{-x}{2018}+\frac{2018}{2018}\)
=> \(\frac{2018-x}{2016}=\frac{2018-x}{2017}+\frac{2018-x}{2018}\)
=> \(\frac{2018-x}{2016}-\frac{2018-x}{2017}-\frac{2018-x}{2018}=0\)
=> \(\left(2018-x\right)\left(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)
=> \(2018-x=0\)
=> \(x=2018\)
Vậy phương trình có tập nghiệm là \(S=\left\{2018\right\}\)
\(ĐKXĐ:x\ne1;5;9\)
\(pt\Leftrightarrow\frac{2x-1}{\left(x-1\right)\left(x-5\right)}+\frac{\left(x-2\right)}{\left(x-1\right)\left(x-9\right)}=\frac{3x-12}{\left(x-9\right)\left(x+5\right)}\)
\(\Rightarrow\left(2x-1\right)\left(x-9\right)+\left(x-2\right)\left(x-9\right)=\left(3x-12\right)\left(x-1\right)\)
\(=>2x^2-x-18x+9+x^2-2x+5x-10=3x^2-12-3x+12\)
\(=>3x^2-16x-1=3x^2-15x+12\)
=>x=-13
\(ĐKXĐ:x\ne2;4\)
\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=3\frac{1}{5}\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)+\left(x-2\right)^2=\frac{16}{5}\left(x-2\right)\left(x-4\right)\)
\(\Leftrightarrow x^2-7x+12+x^2-4x+4=\frac{16}{5}\left(x^2-6x+8\right)\)
\(\Leftrightarrow2x^2-11x+16=\frac{16}{5}x^2-\frac{96}{5}x+\frac{128}{5}\)
\(\Leftrightarrow\frac{6}{5}x^2-\frac{41}{5}x+\frac{48}{5}=0\)
\(\Leftrightarrow6x^2-41x+48=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{16}{3}\\x=\frac{3}{2}\end{cases}}\)
d) x+1/2019 + x+3/2017 = x+5/2015 + x+7/2013
<=> x+1/2019 + x+3/2017 - x+5/2015 - x+7/2013 =0
<=> ( x+1/2019 + 1) + ( x+3/2017 + 1) - ( x+5/2015 + 1) - ( x+7/2013 +1) = 0
<=> ( x+1+2019/2019) +(x+3+2017/2017) - ( x+5+2015/2015) - ( x+7+2013/2013) =0
<=> x+2020/2019 + x+2020/2017 - x+2020/2015 - x+2020/2013 =0
<=> (x+2020)× ( 1/2019 + 1/2017 - 1/2015 - 1/2013) =0
Mà 1/2019 + 1/2017 - 1/2015 - 1/2013 khác 0
=> x+2020 =0
=> x = -2020
\(\left(x-1\right)=\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow\left(x-1\right)-\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
HOẶC\(x-1=0\Leftrightarrow x=1\)(NHẬN)
HOẶC\(x-3=0\Leftrightarrow x=3\)(NHẬN)
VẬY: tập ngiệm của pt là S={1;3}
\(x\ne0\)
Đặt \(\frac{x^2+1}{x}=a\Rightarrow\frac{x}{x^2+1}=\frac{1}{a}\) phương trình trở thành:
\(a+\frac{1}{a}=-\frac{5}{2}\)
\(\Leftrightarrow2a^2+5a+2=0\)
\(\Leftrightarrow\left(2a+1\right)\left(a+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-2\\a=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\frac{x^2+1}{x}=-2\\\frac{x^2+1}{x}=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+1=0\\2x^2+x+2=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow x=-1\)