Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk làm luôn.
a)\(A=\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}:\left(\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)
=\(\frac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\frac{3\sqrt{x}+1}{3}\)
=\(\frac{3x+3\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\frac{3\sqrt{x}+1}{3}\)
\(\frac{3.\left(x+\sqrt{x}\right).\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right).3}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)
mk làm phần rút gọn xong mk bận nên bn tự làm câu b nha ^^
\(A=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]:\frac{6\sqrt{x}}{3\sqrt{x}+1}\)
\(A=\left[\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right].\frac{3\sqrt{x}+1}{6\sqrt{x}}\)
\(A=\frac{3x+3\sqrt{x}}{3\sqrt{x}-1}.\frac{1}{6\sqrt{x}}\)
\(A=\frac{3\sqrt{x}\left(\sqrt{x}+1\right)}{3\sqrt{x}-1}.\frac{1}{6\sqrt{x}}\)
\(A=\frac{\sqrt{x}+1}{6\sqrt{x}-2}\)
\(A=\frac{5}{6}\Leftrightarrow\frac{\sqrt{x}+1}{6\sqrt{x}-2}=\frac{5}{6}\)
\(\Leftrightarrow6\sqrt{x}+6=30\sqrt{x}-10\)
\(\Leftrightarrow24\sqrt{x}=16\)
\(\Leftrightarrow\sqrt{x}=\frac{2}{3}\Leftrightarrow x=\frac{4}{9}\)
\(A=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]\div\frac{6\sqrt{x}}{3\sqrt{x}+1}\)
\(A=\left[\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]\times\frac{3\sqrt{x}+1}{6\sqrt{x}}\)
\(A=\frac{3x+3\sqrt{x}}{3\sqrt{x}-1}\times\frac{1}{6\sqrt{x}}\)
\(A=\frac{3\sqrt{x}\left(\sqrt{x}+1\right)}{3\sqrt{x}-1}\times\frac{1}{6\sqrt{x}}\)
\(A=\frac{\sqrt{x}+1}{6\sqrt{x}-2}\)
\(A=\frac{5}{6}\)
\(\Leftrightarrow\frac{\sqrt{x}+1}{6\sqrt{x}-2}=\frac{5}{6}\)
\(\Leftrightarrow6\sqrt{x}+6=30\sqrt{x}-10\)
\(\Leftrightarrow24\sqrt{x}=16\)
\(\Leftrightarrow\sqrt{x}=\frac{2}{3}\)
\(\Leftrightarrow x=\frac{4}{9}\)
B1:
\(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{18}\)
\(=\left|\sqrt{2}-\sqrt{3}\right|+3\sqrt{2}\)
\(=\sqrt{3}-\sqrt{2}+3\sqrt{2}\)
\(=\sqrt{3}+2\sqrt{2}\)
\(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(=\sqrt{4-4\sqrt{3}+3}+\left|1+\sqrt{3}\right|\)
\(=\sqrt{\left(2-\sqrt{3}\right)^2}+1+\sqrt{3}\)
\(=2-\sqrt{3}+1+\sqrt{3}\)
\(=3\)
B2:
đk: \(x\ge-2\)
Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\frac{4}{5}\sqrt{25x+50}=6\)
\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)
\(\Leftrightarrow2\sqrt{x+2}=6\)
\(\Leftrightarrow\sqrt{x+2}=3\)
\(\Leftrightarrow x+2=9\)
\(\Rightarrow x=7\)
Vậy x = 7
Với \(x\ge0;x\ne1\)
\(\left(\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}+\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}\right):\frac{1}{x-1}\)
\(=\left(\frac{3x+3\sqrt{x}-3+\sqrt{x}+2+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right)\left(x-1\right)\)
\(=\left(x-1\right)\left(\frac{3x+5\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right)=\frac{\left(x-1\right)\left(3\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\left(\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)\)
\(\left(\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}+\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}\right):\frac{1}{x-1}\)
\(=\left(\frac{3x+\sqrt{9x}-3+\sqrt{x}+2+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right):\frac{1}{x-1}\)
\(=\left(\frac{3x+5\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right):\frac{1}{x-1}=\frac{\left(3\text{}\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\times\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(=\left(3\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)