Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\omega=\frac{2\pi}{T}=2\pi\)(rad/s)
Vận tốc cực đại \(v_{max}=\omega A=2\pi.5=10\pi\)(cm/s)
Vì vận tốc là đại lượng biến thiên điều hòa theo thời gian, nên ta khảo sát nó bằng véc tơ quay.
10π v 5π M N -10π O
Tại thời điểm t, trạng thái của vận tốc ứng với véc tơ OM, sau 1/6 s = 1/6 T, véc tơ quay: 1/6.360 = 600
Khi đó, trạng thái của vận tốc ứng với véc tơ ON --> Vận tốc đạt giá trị cực đại là: \(10\pi\) (cm/s)
Đáp án B.
Phương trình tổng quát: \(x= A cos(\omega t+\varphi)\)
+ Tần số góc: \(\omega = 2\pi/2 = \pi \ (rad/s)\)
+ t=0, vật qua VTCB theo chiều đương \(\Rightarrow\left\{ \begin{array}{} x_0 = 0\ cm\\ v_0 >0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 0\ cm\\ \sin \varphi <0 \end{array} \right. \Rightarrow \varphi = -\frac{\pi}{2}\)
Vậy phương trình dao động: \(x = 5\cos(\pi t - \frac{\pi}{2})\) (cm)
tại sao lại ra φ=\(\dfrac{-\pi}{2}\) làm cách nào vậy bạn???
Chọn đáp án D
ω = 2 π ⇒ T = 1 ( s ) ⇒ 0 , 125 ( s ) = 1 8 T ⇒ △ φ = π 4 .
x 0 = 5 c m ⇒ cos φ 0 = 5 20 ⇒ φ 0 = − 1 , 318 ⇒ φ 1 = φ 0 + Δ φ = − 0 , 533
⇒ x 1 = A . cos φ 1 = 17 , 2 c m .
Chu kì dao động: \(T=\dfrac{2\pi}{\omega}=0,5s\)
a) t = 0,124s = T/4
Biểu diễn dao động bằng véc tơ quay, ta có:
-8 > x 8 O -4 M N 30 60 30
Ban đầu, vị trí của vật ứng với véc tơ quay tại M, sau T/4, vị trí đó đến điểm N.
\(\Rightarrow x = 8\cos 30^0=4\sqrt 3(cm)\)
b) Hoàn toàn tương tự, ta tìm được li độ của vật sau 0,3125s là \(x=0cm\)
Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)
+ \(\omega = 2\pi f = 2\pi .10 = 20\pi \ (rad/s) \)
+ A = 4cm.
+ t = 0, vật qua x0 = A \(\Rightarrow\left\{ \begin{array}{} x_0 = 4\ cm\\ v_0 =0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 1\ cm\\ \sin \varphi = 0 \end{array} \right. \Rightarrow \varphi = 0\)
Vậy phương trình dao động: \(x = 4\cos(20\pi t) \ (cm)\)
Đáp án C