Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3+\sqrt{2x-3}=x\)
\(\Leftrightarrow\sqrt{2x-3}=x-3\)
\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\2x-3=\left(x-3\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\x^2-8x+12=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge3\\x=2;x=6\end{cases}}\)
\(\Leftrightarrow x=6\)
b) Ta có: \(F\left(2\right)=a\left(2\right)^3+b.2-1=2009\)
\(\Rightarrow a.\left(2\right)^3+b.2=2009+1=2010\)
Suy ra \(F\left(-2\right)=a.\left(-2\right)^3+b\left(-2\right)-1\)
\(=-\left[a.\left(2\right)^3+b.2\right]-1\)
\(=-\left[2010\right]-1\)
\(=-2011\)
c) Nhẩm thấy x = 1 là nghiệm nên ta phân tách vế trái thành nhân tử có một thừa số là (x -1).
Ta chia đa thức vế trái cho \(x-1\) thì được thương là \(\left(m+1\right)x^2+4mx+4m-1\).
Vậy phương trình tích là:
\(\left(x-1\right)\left[\left(m+1\right)x^2+4mx+4m-1\right]=0\)
a) TXĐ:\(x\ge0\)
b)\(f\left(4-2\sqrt{3}\right)=\frac{\sqrt{3}-1-1}{\sqrt{3}-1+1}\)\(=\frac{\sqrt{3}\left(\sqrt{3}-2\right)}{\sqrt{3}}=\frac{3-2\sqrt{3}}{3}\)
\(f\left(a^2\right)=\frac{\left(-a\right)-1}{\left(-a\right)+1}=\frac{-1-a}{1-a}\)
c)\(f\left(x\right)\in Z\Rightarrow1-\frac{2}{\sqrt{x}+1}\in Z\)
\(\Rightarrow\sqrt{x}+1\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow x\in\left\{0;1\right\}TM\)
d)\(f\left(x\right)=f\left(x^2\right)\)
\(\Rightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\left|x\right|-1}{\left|x\right|+1}=\frac{x-1}{x+1}\)
\(\Rightarrow\left(x+1\right)\left(\sqrt{x}-1\right)=\left(x-1\right)\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow-x+\sqrt{x}=x-\sqrt{x}\)
\(\Rightarrow x=0;1\)(TM)
+KL...
#Walker
1,Giải sử x0 là nghiệm chung của hai pt
Ta có hệ: \(\left\{{}\begin{matrix}x_0^2-\left(m+2\right)x_0+3m-1=0\left(1\right)\\x_0^2-\left(2m+3\right)x_0+3m+3=0\end{matrix}\right.\)
=> \(\left(2m+3\right)x_0-\left(m+2\right)x_0+3m-1-3m-3=0\)
<=> \(x_0\left(m+1\right)-4=0\)
Do hai pt có nghiệm chung => \(x_0\in R\) => \(m\ne-1\)
<=> \(x_0=\frac{4}{m+1}\) thay vào (1) có
\(\frac{16}{\left(m+1\right)^2}-\frac{\left(m+2\right).4}{m+1}+3m-1=0\)
<=> \(\frac{16}{\left(m+1\right)^2}-\frac{4\left(m+2\right)\left(m+1\right)}{\left(m+1\right)^2}+\frac{3m\left(m+1\right)^2}{\left(m+1\right)^2}-\frac{\left(m+1\right)^2}{\left(m+1\right)^2}=0\)
<=> \(16-4\left(m^2+3m+2\right)+3m\left(m^2+2m+1\right)-\left(m^2+2m+1\right)=0\)
<=> \(16-4m^2-12m-8+3m^3+6m^2+3m-m^2-2m-1=0\)
<=> \(3m^3+m^2-11m+7=0\)
<=> \(3m^3-3m^2+4m^2-4m-7m+7=0\)
<=>\(3m^2\left(m-1\right)+4m\left(m-1\right)-7\left(m-1\right)=0\)
<=> \(\left(m-1\right)\left(3m^2+4m-7\right)=0\)
<=> \(\left(m-1\right)^2\left(3m+7\right)=0\)
<=> \(\left[{}\begin{matrix}m=1\\m=-\frac{7}{3}\end{matrix}\right.\)
a,
Ta có đenta'=[-(m+2)]^2-6m-1
=m^2+4m+4-6m-1
=m^2-2m+3
=(m-1)^2+2>0
vậy phương trình có 2 no pb với mọi m
Bạn vào đây xem thử
Câu hỏi của bababa ânnnanana - Toán lớp 8 | Học trực tuyến
\(\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}=\sqrt{\left(x+1\right)^2}-\sqrt{\left(1-x\right)^2}\)
= | x+1 | - | 1-x | \(\ge\left|x+1+1-x\right|=\left|2\right|=2\)
dấu "=" xảy ra <=> \(\left(x+1\right)\left(1-x\right)\ge0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1\ge0\\1-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1\le0\\1-x\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-1\\x\le1\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\end{matrix}\right.\)
<=> \(-1\le x\le1\)
Vậy min C = 1 khi và chỉ khi \(-1\le x\le1\)
a, P=\(\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{\left(1-x\right)^2}{2}\)
\(P=\left(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\dfrac{\left(1-x\right)^2}{2}\)
\(P=\dfrac{x-\sqrt{x}-2-\left(x+\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\left(1-x\right)^2}{2}\)
\(P=\dfrac{-2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(x-1\right)^2}{2}\)
\(P=\dfrac{-\sqrt{x}\left(x-1\right)}{\sqrt{x}+1}=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=-\sqrt{x}\left(\sqrt{x}-1\right)=\sqrt{x}-x\)b,x=\(7-4\sqrt{3}=4-2.2\sqrt{3}+3=\left(2-\sqrt{3}\right)^2\)
Thay vào ta có \(P=\sqrt{\left(4-\sqrt{3}\right)^2}-\left(7-4\sqrt{3}\right)\)
\(P=\left|4-\sqrt{3}\right|-7-4\sqrt{3}=4-\sqrt{3}-7+4\sqrt{3}\)
\(P=-3+3\sqrt{3}\)
Câu 2:
a: f(1)=2
=>m-1+2m-3=2
=>3m=6
=>m=2
=>f(x)=x+1
=>f(2)=2+1=3
b: f(-3)=0
=>-3m+3+2m-3=0
=>m=0
=>f(x)=-x-3
=>f(x) nghịch biến
Đáp án D