K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2017

a) (x - 2)(x - 3).                        b) 3(x - 2)(x + 5).

c) (x - 2)(3x + 1).                     d) (x-2y)(x - 5y).

e) (x + l)(x + 2)(x - 3).             g) (x-1)(x + 3)( x 2  + 3).

h) (x + y - 3)(x - y + 1).

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}

25 tháng 10 2016

1.x2-9

= (x-3)(x+3)

2. -2x2+2x+12

= -2x2+6x-4x+12

= -2x(x+2)+6(x+2)

= (x+2)(-2x+6)

4. -2x2+2x+24

= -2x2+8x-6x+24

= -2x(x+3)+8(x+3)

= (x+3)(-2x+8)

6. x2-5x+4

= x2-4x-x+4

= x(x-1) -4(x-1)

= (x-1)(x-4)

8. x2-7x+6

= x2-6x-x+6

= x(x-1)-6(x-1)

= (x-1)(x-6)

9. x2+5x+4

= x2+4x+x+4

= x(x+1)+4(x+1)

=(x+1)(x+4)

10. x2+7x+6

= x2 +x+6x+6

= x(x+1)+6(x+1)

= (x+6)(x+1)

K nhé

25 tháng 10 2016

Cảm ơn nhìu

27 tháng 8 2016

Giải giúp mình nhé.

13 tháng 10 2018

\(3x^4-5x^3-18x^2-3x+5\)

\(=\left(3x^4-6x^3-15x^2\right)+\left(x^3-2x^2-5x\right)-\left(x^2-2x-5\right)\)

\(=3x^2\left(x^2-2x-5\right)+x\left(x^2-2x-5\right)-\left(x^2-2x-5\right)\)

\(=\left(x^2-2x-5\right)\left(3x^2+x-1\right)\)

25 tháng 10 2021

\(a,x^2-5x\)

\(=x\left(x-5\right)\)

\(b,5x\left(x+5\right)+4x+20\)

\(=5x\left(x+5\right)+4\left(x+5\right)\)

\(=\left(5x+4\right)\left(x+5\right)\)

\(c,7x\left(2x-1\right)-4x+2\)

\(=7x\left(2x-1\right)-2\left(2x-1\right)\)

\(=\left(7x-2\right)-\left(2x-1\right)\)

25 tháng 10 2021

\(d,x^2-16+2\left(x+4\right)\)

\(=x^2-16+2x+8\)

\(=x\left(x-2\right)-8\) ( Ý này thì k chắc lắm, sai thông cảm :)) ) 

\(e,x^2-10x+9\)

\(=x^2-x-9x+9\)

\(=x\left(x-1\right)-9\left(x-1\right)\)

\(=\left(x-9\right)\left(x-1\right)\)

\(f,\left(2x-1\right)^2-\left(x-3\right)^2=0\) ( mk đoán bài này là tìm x, sai thì bảo mk để mk sửa nhé ) 

\(\Rightarrow\left(2x-1\right)^2=\left(x-3\right)^2\)

\(\Leftrightarrow\pm\left(2x-1\right)=\pm\left(x-3\right)\)

\(\Rightarrow\hept{\begin{cases}2x-1=x-3\\-\left(2x-1\right)=-\left(x-3\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2x-1-x+3=0\\-2x+1-x+3=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+2=0\\-3x+4=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\left(-2\right)\\x=\frac{4}{3}\end{cases}}\)

Vậy ... 

12 tháng 8 2019

\(a,9x-x^3=x\left(9-x^2\right)=x\left(3-x\right)\left(3+x\right)\)

\(b,\left(2xy+1\right)^2-\left(2x+y\right)^2\)

\(=\left(2xy+1-2x-y\right)\left(2xy+1+2x+y\right)\)

\(c,x^3+2x^2-6x-27\)

\(=x^3+5x^2+9x-3x^2-15x-27\)

\(=\left(x^3-3x^2\right)+\left(5x^2-15x\right)+\left(9x-27\right)\)

\(=x^2\left(x-3\right)+5x\left(x-3\right)+9\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+5x+9\right)\)

\(d,\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)\)

\(=\left(x+y\right)\left(x+y-x+y\right)\)

\(=2y\left(x+y\right)\)

\(e,x-2x^2-4y^2-4y\)

Câu này ko phân tích đc nhé bn

Bn kiểm tra lại đề bài

\(g,x^3-x^2-5x+125\)

\(=x^3-6x^2+25x+5x^2-30x+125\)

\(=\left(x^3+5x^2\right)-\left(6x^2+30x\right)+\left(25x+125\right)\)

\(=x^2\left(x+5\right)-6x\left(x+5\right)+25\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-6x+25\right)\)

12 tháng 8 2019

C làm giúp em , em ghi sai đề ạ

e. x - 2x - 4y2 - 4y

26 tháng 7 2017

a) bt \(=\left(x-8\right)\left(x^2-x-2\right)=\left(x-8\right)\left(x+1\right)\left(x-2\right)\)

kl: ...

b) \(=\left(x+2\right)\left(x^2-8x-15\right)=\left(x+2\right)\left(x-5\right)\left(x-3\right)\)

kl:....

26 tháng 7 2017

a, \(x^3-9x^2+6x+16\)

\(=x^3-8x^2-x^2+8x-2x+16\)

\(=x^2\left(x-8\right)-x\left(x-8\right)-2\left(x-8\right)\)

\(=\left(x-8\right)\left(x^2-x-2\right)\)

\(=\left(x-8\right)\left(x^2-2x+x-2\right)\)

\(=\left(x-8\right)\left[x\left(x-2\right)+\left(x-2\right)\right]\)

\(=\left(x-8\right)\left(x-2\right)\left(x+1\right)\)

b, \(x^3-6x^2-x+30\)

\(=x^3-5x^2-x^2+5x-6x+30\)

\(=x^2\left(x-5\right)-x\left(x-5\right)-6\left(x-5\right)\)

\(=\left(x-5\right)\left(x^2-x-6\right)\)

\(=\left(x-5\right)\left(x^2-3x+2x-6\right)\)

\(=\left(x-5\right)\left[x\left(x-3\right)+2\left(x-3\right)\right]\)

\(=\left(x-5\right)\left(x-3\right)\left(x+2\right)\)

Chúc bạn học tốt!!!

28 tháng 10 2018

a) \(x^3+2x^2y+xy^2-4xz^2=x\left(x^2+2xy+y^2-4z^2\right)=x\left[\left(x+y\right)^2-\left(2z\right)^2\right]\)

\(=x\left(x+y-2z\right)\left(x+y+2z\right)\)

b)\(-8x^3+12x^2y-6xy^2+y^3=y^3+3.y.\left(2x\right)^2-3.y^2.2x-\left(2x\right)^3\)\(=\left(y-2x\right)^3\)

c)\(6x^2+7x-5=2x\left(3x+5\right)-\left(3x+5\right)=\left(3x+5\right)\left(2x-1\right)\)

d)\(x^4+64y^4=\left(x^2\right)^2+2.x^2.8y^2+\left(8y^2\right)^2-16x^2y^2=\left(x^2+8y^2\right)-\left(4xy\right)^2\)

\(=\left(x^2+8y^2-4xy\right)\left(x^2+8y^2+4xy\right)\)

e)\(x\left(2-x\right)-x+2=x\left(2-x\right)+\left(2-x\right)=\left(2-x\right)\left(x+1\right)\)

f)\(2x^2+3x-2=2x\left(x+2\right)-\left(x+2\right)=\left(x+2\right)\left(2x-1\right)\)

h)\(3x^2-6xy+3y^2-12z^2=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)

\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)

g)\(x^3-3x^2-9x+27=x^2\left(x-3\right)-9\left(x-3\right)=\left(x-3\right)\left(x^2-9\right)\)\(=\left(x-3\right)^2\left(x+3\right)\)

B2: \(x^3-5x=0\Rightarrow x\left(x^2-5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x^2-5=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=5\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{5}\end{cases}}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=5\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\\orbr{\begin{cases}x=\sqrt{5}\\x=-\sqrt{5}\end{cases}}\end{cases}}\)

24 tháng 6 2017

a) Ta có : x2 - 4x + 3

= x2 - x - 3x + 3

= x(x - 1) - (3x - 3) 

= x(x - 1) - 3(x - 1)

= (x - 1) (x - 3) 

24 tháng 6 2017

a) \(x^2-4x+3\)

\(=x^2-x-3x+3\)

\(=x\left(x-1\right)-3\left(x-1\right)\)

\(=\left(x-1\right)\left(x-3\right)\)

b) \(x^2+5x+4\)

\(=x^2+x+4x+4\)

\(=x\left(x+1\right)+4\left(x+1\right)\)

\(=\left(x+1\right)\left(x+4\right)\)

c) \(x^2-x-6\)

\(=x^2-3x+2x-6\)

\(=x\left(x-3\right)+2\left(x-3\right)\)

\(=\left(x+2\right)\left(x-3\right)\)

d) \(x^4+1997x^2+1996x+1997\)

\(=x^4+x^2+1996x^2+1996x+1996+1\)

\(=\left(x^4+x^2+1\right)+\left(1996x^2+1996x+1996\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+1\right)+1996\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+1997\right)\)

e) \(x^2-2001\cdot2002\)( hình như sai sai)