Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có :
\(AH\perp BC\left(GT\right)\Rightarrow\widehat{HAB}+\widehat{B}=90^o\)
Mà \(\widehat{B}+\widehat{C=90^o}\)( Trong tam giác vuông 2 góc nhọn phụ nhau )
\(\Rightarrow\widehat{HAB}=\widehat{C}\left(1\right)\)
Xét \(\Delta ABC\left(\widehat{BAC}=90^o\right)\)có :
AM là trung tuyến ứng với cạnh huyền BC ( GT )
\(\Rightarrow AM=MC=\frac{1}{2}BC\)( Tính chất )
Vì \(AM=MC\)
\(\Rightarrow\Delta AMC\)cân tại M ( Định nghĩa )
\(\Rightarrow\widehat{MAC}=\widehat{C}\)( Tính chất ) \(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\widehat{HAB}=\widehat{MAC}\left(DPCM\right)\)
Xét tứ giác ADHE, ta có:
∠ A = 90 0 (gt)
∠ (ADH) = 90 0 (vì HD ⊥ AB)
∠ (AEH) = 90 0 (vì HE ⊥ AC)
Suy ra tứ giác ADHE là hình chữ nhật (vì có 3 góc vuông).
+ Xét ∆ ADH và ∆ EHD có :
DH chung
AD = EH ( vì ADHE là hình chữ nhật)
∠ (ADN) = ∠ (EHD) = 90 0
Suy ra: ∆ ADH = ∆ EHD (c.g.c)
⇒ ∠ A 1 = ∠ (HED)
Lại có: ∠ (HED) + ∠ E 1 = ∠ (HEA) = 90 0
Suy ra: ∠ E 1 + ∠ A 1 = 90 0
∠ A 1 = ∠ A 2 (chứng minh trên) ⇒ ∠ E 1 + ∠ A 2 = 90 0
Gọi I là giao điểm của AM và DE.
Trong ∆ AIE ta có: ∠ (AIE) = 180o – ( ∠ E 1 + ∠ A 2 ) = 180 0 - 90 0 = 90 0
Vậy AM ⊥ DE.
a) Xét ∆ vuông ABC có
AM là trung tuyến
=> AM = BM = CM
=> ∆AMC cân tại M
=> MAC = MCA
Xét ∆ABH có :
BHA + BAH + ABH = 180°
=> BAH + ABH = 90°
Xét ∆ABC có :
ABC + BCA + BAC = 180°
=> ABC + ACB = 90°
=> BAH = MCA
Mà MAC = MCA (cmt)
=> BAH = MAC
b) Gọi I là giao điểm DE và AH
Xét tứ giác DHEA có :
BAC = 90° (gt)
MDA = 90° ( MD\(\perp\)AB )
HEA = 90° ( HE\(\perp\)AC)
=> DHEA là hình chữ nhật
=> I là trung điểm DE và HA
=> DI = IA
=> ∆IDA cân tại I
=> IDA = IAD (1)
Vì MAC = MCA (2) (cmt)
Ta có :
DAI + MAC = 90°
MCA + MAC = 90°
=> DAI = MCA ( cùng phụ với MAC )(3)
Từ (1) (2)(3)
=> DAI = MAC = MCA
Vì I là trung điểm DE
=> ∆IAE cân tại I
=> IAE = IEA
Gọi giao điểm DE,AM là O
Xét ∆ADE có :
DAE + ADE + DEA = 180°
=> ADE + DEA = 90° .
Mà IAE = IEA (cmt)
MAC = ADI (cmt)
=> MAE + IEA = 90°
Xét ∆IAE có :
IAE + IEA + AIE = 180°
=> AIE = 90°
Hay AM \(\perp\)DE(dpcm)
cho tam giác ABC vuông tại A đường cao AH ( H thuộc cạnh BC) .gọi D, E theo thứ tự chân đường vuông góc kẻ từ H đến AB và AC .Gọi M, N theo thứ tự là trung điểm của BH và CH .Gọi I là giao điểm của AH và ED
1: cm tam giác DHE là tam giác vuông.Biết AB=3,AC=4, tính
a: bán kính của đường tròn ngoại tiếp tam giác DHE
b: cos ACH
2: cm ED là tiếp tuyến của đường tròn đg kính CH
3: cm I thuộc đg tròn đg kính Mn
Tam giác BDH vuông tại D có DI là đường trung tuyến thuộc cạnh huyền BH
⇒ DI = IB = 1/2 BH (tính chất tam giác vuông)
⇒ ∆ IDB cân tại I ⇒ ∠ (DIB) = 180 0 - 2. ∠ B (1)
Tam giác HEC vuông tại E có EK là đường trung tuyến thuộc cạnh huyền HC.
⇒ EK = KH = 1/2 HC (tính chất tam giác vuông) .
⇒ ∆ KHE cân tại K ⇒ ∠ (EKH) = 180 0 - 2. ∠ (KHE) (2)
Tứ giác ADHE là hình chữ nhật nên:
HE // AD hay HE // AB ⇒ ∠ B = ∠ (KHE) (đồng vị)
Từ (1), (2) và (3) suy ra: ∠ (DIB) = ∠ (EKH)
Vậy DI // EK (vì có cặp góc đồng vị bằng nhau).
a: Xét tứ giác ADHE có
\(\widehat{EAD}=\widehat{AEH}=\widehat{ADH}=90^0\)
Do đó: ADHE là hình chữ nhật
Suy ra: AH=DE
Xét tứ giác ADHE, ta có:
∠ A = 90 0 (gt)
∠ (ADH) = 90 0 (vì HD ⊥ AB)
∠ (AEH) = 90 0 (Vì HE ⊥ AC)
Suy ra tứ giác ADHE là hình chữ nhật (vì có 3 góc vuông)
Vậy AH = DE (tính chất hình chữ nhật)