Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6: Tìm các số nguyên 𝑥 , 𝑦 , 𝑧 x,y,z Bạn đã cho một hệ phương trình phức tạp, nhưng tôi sẽ cố gắng làm rõ và giải quyết từng bước. Các phương trình là: 48 4 8 84 = 𝑥 − 10 𝑥 − 10 48 8 4 84=x−10 −10 x − 10 𝑥 = − 7 𝑦 −10x=−7y 𝑦 − 7 = 𝑧 − 24 𝑧 − 24 y−7=z−24 −24 z Chúng ta sẽ phân tích từng phương trình. Phương trình 1: 48 4 8 84 = 𝑥 − 10 𝑥 − 10 48 8 4 84=x−10 −10 x Dường như có sự nhầm lẫn trong cách viết phương trình này, vì nó không rõ ràng. Tuy nhiên, tôi đoán bạn muốn nói 48 4 8 = 𝑥 − 10 × 𝑥 − 10 48 8 4 =x−10× −10 x . Để làm rõ, 48 4 8 48 8 4 có thể viết là 48.5 48.5 (tức là 48 + 4 8 = 48.5 48+ 8 4 =48.5). Phương trình trên có thể viết lại như sau: 48.5 = 𝑥 + 𝑥 48.5=x+x 48.5 = 2 𝑥 48.5=2x 𝑥 = 48.5 2 = 24.25 x= 2 48.5 =24.25 Tuy nhiên, 𝑥 = 24.25 x=24.25 không phải là một số nguyên, nên có thể có sự nhầm lẫn trong cách viết phương trình. Phương trình 2: − 10 𝑥 = − 7 𝑦 −10x=−7y Ta có − 10 𝑥 = − 7 𝑦 −10x=−7y, hay là 10 𝑥 = 7 𝑦 10x=7y. Phương trình này cho thấy rằng 𝑥 x và 𝑦 y phải có một tỷ lệ đặc biệt sao cho khi nhân 𝑥 x với 10, kết quả phải là nhân 𝑦 y với 7. Do 𝑥 x và 𝑦 y là các số nguyên, ta có thể tìm các giá trị của 𝑥 x và 𝑦 y thỏa mãn điều kiện này. Phương trình 3: 𝑦 − 7 = 𝑧 − 24 𝑧 − 24 y−7=z−24 −24 z Giống như phương trình đầu tiên, biểu thức này không hoàn toàn rõ ràng. Tuy nhiên, nếu giả sử bạn muốn viết 𝑦 − 7 = 𝑧 + 𝑧 24 y−7=z+ 24 z , ta có thể tiếp tục phân tích. Bài 7: Biểu thức 𝐴 = 3 𝑛 − 2 𝑛 − 2 A= n−2 3n−2 a) Tìm các số nguyên 𝑛 n để 𝐴 A là phân số: Biểu thức 𝐴 = 3 𝑛 − 2 𝑛 − 2 A= n−2 3n−2 là một phân số nếu mẫu số khác 0. Do đó, 𝑛 − 2 ≠ 0 n−2 =0, tức là 𝑛 ≠ 2 n =2. Vậy, 𝐴 A sẽ là phân số với tất cả các số nguyên 𝑛 n ngoại trừ 𝑛 = 2 n=2. b) Tìm các số nguyên 𝑛 n để 𝐴 A là số nguyên: Để 𝐴 = 3 𝑛 − 2 𝑛 − 2 A= n−2 3n−2 là một số nguyên, mẫu số phải chia hết cho tử số. Ta xét phép chia 3 𝑛 − 2 𝑛 − 2 n−2 3n−2 . Ta thực hiện phép chia polynom: 3 𝑛 − 2 𝑛 − 2 = 3 + 4 𝑛 − 2 n−2 3n−2 =3+ n−2 4 Để 𝐴 A là một số nguyên, phần dư 4 𝑛 − 2 n−2 4 phải là một số nguyên, nghĩa là 𝑛 − 2 n−2 phải là một ước của 4. Các ước của 4 là: ± 1 , ± 2 , ± 4 ±1,±2,±4. Do đó, 𝑛 − 2 n−2 có thể là 1 , − 1 , 2 , − 2 , 4 , − 4 1,−1,2,−2,4,−4. Từ đó, ta có: 𝑛 − 2 = 1 ⇒ 𝑛 = 3 n−2=1⇒n=3 𝑛 − 2 = − 1 ⇒ 𝑛 = 1 n−2=−1⇒n=1 𝑛 − 2 = 2 ⇒ 𝑛 = 4 n−2=2⇒n=4 𝑛 − 2 = − 2 ⇒ 𝑛 = 0 n−2=−2⇒n=0 𝑛 − 2 = 4 ⇒ 𝑛 = 6 n−2=4⇒n=6 𝑛 − 2 = − 4 ⇒ 𝑛 = − 2 n−2=−4⇒n=−2 Vậy các giá trị của 𝑛 n để 𝐴 A là một số nguyên là: 𝑛 = − 2 , 0 , 1 , 3 , 4 , 6 n=−2,0,1,3,4,6. Hy vọng tôi đã giúp bạn hiểu rõ hơn về các bài toán này! Nếu cần giải thích thêm hoặc có thêm câu hỏi, bạn có thể hỏi tiếp.
a) 7 - x = 8 - (-7)
7 - x = 15
x = 7 - 15
x = - 8
b) x - 8 = (-3) - 8.
x - 8 = (-11)
x =(-11) + 8
x = - 3
a) 7 – x = 8 – (-7)
7 – x
= 8 + 7 (bỏ dấu ngoặc có dấu "+" đằng trước)
7 - x = 15
-x = 15 - 7 (chuyển 7 sang vế phải)
-x = 8 (chuyển -x sang vế phải, chuyển 8 sang vế trái)
-8 = x
x = -8
b) x - 8 = (-3) - 8
x = (-3) - 8 + 8 (chuyển -8 sang vế phải)
x = -3
hoặc: x - 8 = (-3)
- 8 x = -3 (tính chất: a + c = b +c => a = b)
a) | a + 3 | = 7
=> a + 3 = 7 hoặc a + 3 = -7
TH1 : a + 3 = 7
a = 7 - 3
a = 4
TH2 : a + 3 = -7
a = -7 - 3
a = -10
Vậy a \(\in\) { 4 ; -10 }
b) | a - 5 | = (-5) + 8
| a - 5 | = 3
=> a - 5 = 3 hoặc a - 5 = -3
TH1 : a - 5 = 3
a = 3 + 5
a = 8
TH2 : a - 5 = -3
a = -3 + 5
a = 2
Vậy a \(\in\) { 8 ; 2 }
Nhớ ủng hộ 1 Đúng !
a. \(\left|a+3\right|=7\)
TH1: \(a+3=7\)
\(\Leftrightarrow a=7-3\)
\(\Leftrightarrow a=4\)
TH2: \(a+3=-7\)
\(\Leftrightarrow a=-7-3\)
\(\Leftrightarrow a=-10\)
Vậy \(a=4\) hoặc \(a=-10\)
b. \(\left|a-5\right|=\left(-5\right)+8\)
\(\Leftrightarrow\left|a-5\right|=3\)
TH1: \(a-5=3\)
\(\Leftrightarrow a=3+5\)
\(\Leftrightarrow a=8\)
TH2: \(a-5=-3\)
\(\Leftrightarrow a=-3+5\)
\(\Leftrightarrow a=2\)
Vậy \(a=8\) hoặc \(a=2\)
Bài 1
1)x thuộc {-14;-4}
2)x thuộc {-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6}
3)x=8
Bài 2
a)(-a-b+c)-(-a-b-c)=-a-b+c+a+b+c=(-a+a)+(-b+b)+(c+c)=0+0+2c=2c
b)a=0
c)Các số nguyên x thỏa mãn -8<x<9 là: -7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7;8
Tổng của dãy số trên là : -7+-6+-5+-4+-3+-2+-1+0+1+2+3+4+5+6+7+8=8
\(\frac{1}{a}+\frac{b}{4}=\frac{3}{8}\)
\(\Rightarrow\frac{1}{a}=\frac{3}{8}-\frac{b}{4}\)
\(\Rightarrow\frac{1}{a}=\frac{3-2b}{8}\)
\(\Rightarrow\frac{8}{a}=3-2b\)
Để a và b thuộc số nguyên
=> 3-2b thuộc số nguyên
=> 8/a thuộc số nguyện
=> a thuộc Ư(8) = { 1 ; -1 ; 2 ; -2 ; 4 ; -4 ; 8 ; -8 }
Ta có xét bảng giá trị:
a | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
b | -5/2 | 11/2 | -1/2 | 7/2 | 1/2 | 5/2 | 1 | 2 |
kết luận | loại | loại | loại | loại | loại | loại | chọn | chọn |
Vậy cặp (a;b) thỏa mãn yêu cầu đề bài là (8;1); (-1;2)
Bài 1:
a; \(\dfrac{x}{3}\) = \(\dfrac{4}{y}\)
\(xy\) = 12
12 = 22.3; Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6;12}
Lập bảng ta có:
\(x\) | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
y | -1 | -2 | -3 | -4 | -6 | -12 | 12 | 6 | 4 | 3 | 2 | 1 |
Theo bảng trên ta có các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x\)\(;y\)) =(-12; -1);(-6; -2);(-4; -3);(-2; -6);(-1; 12);(1; 12);(2;6);(3;4);(4;3);(6;2);(12;1)
b; \(\dfrac{x}{y}\) = \(\dfrac{2}{7}\)
\(x\) = \(\dfrac{2}{7}\).y
\(x\) \(\in\)z ⇔ y ⋮ 7
y = 7k;
\(x\) = 2k
Vậy \(\left\{{}\begin{matrix}x=2k\\y=7k;k\in z\end{matrix}\right.\)
a) Ta có : x + 8 = (x + 7) + 1
Do x + 7 \(⋮\)x + 7
Để x + 8 \(⋮\)x + 7 thì 1 \(⋮\)x + 7 => x + 7 \(\in\)Ư(1) = {1; - 1}
Với : x + 7 = 1 => x = - 6
x + 7 = -1 => x = -8
Vậy x = {-6; - 8} thì x + 8 \(⋮\)x + 7
Có :\(\frac{x+8}{x+7}=\frac{\left(x+7\right)+1}{x+7}=1+\frac{1}{x+7}\)
Để x+8 chia hết cho x+7 thì \(\frac{1}{x+7}\)thuộc Z. => x+7 thuộc Ư(1)={-1,1}
x+7 | 1 | -1 |
x | -6 | -8 |
- Do p+2; p+6; p+8, p+14 là số tự nhiên lớn hơn 2 => các số này đều lẻ => p là số lẻ
+ Với p=3 thì p+6=9 (không phải số tự nhiên)
+ Với p=5 thì p+2=7 (nhận)
+ Với p > 5, do p là số tự nhiên nên p= 5k+1, 5k+2; 5k+3 hoặc 5k+4 (k\(\in\)N)
+ Nếu p= 5k+2 thì p+8= 5k+10 chia hết cho 5 mà 1 < 5 nên p + 8 là hợp số ( loại)
+ Nếu p= 5k+3 thì p+2= 5k+5 chia hết cho 5 mà 1 < 5 nên p + 2 là hợp số ( loại)
+ Nếu p= 5k+4 thì p+6= 5k+10 chia hết cho 5 mà 1 < 5 nên p + 6 là hợp số ( loại)
=> p=5
a) Ta có: \(\left|a\right|=4\) => \(\left[{}\begin{matrix}a=4\\a=-4\end{matrix}\right.\)
b) Ta có: \(\left|a\right|=0\) => \(a=0\)
c) Ta có: \(\left|a\right|=-3\)
Vì trị tuyệt đối luôn là số không âm mà -3 < 0
=> a không có
d) Ta có: \(\left|a\right|=\left|-8\right|\) => \(\left|a\right|=8\) => \(\left[{}\begin{matrix}a=8\\a=-8\end{matrix}\right.\)
e) Ta có: \(-13.\left|a\right|=-26\) => \(\left|a\right|=-26:\left(-13\right)\)
=> \(\left|a\right|=2\) => \(\left[{}\begin{matrix}a=2\\a=-2\end{matrix}\right.\)
|a| = |-8| ⇒ |a| = 8
Suy ra a = 8 hoặc a = -8