Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{2x}\) - \(6\sqrt{2x}\) + \(16\sqrt{2x}\) = 52 <=> \(11\sqrt{2x}\) = 52 <=> \(\sqrt{2x}\) =\(\dfrac{52}{11}\) <=> 2x = \(\dfrac{2704}{121}\) <=> x = \(\dfrac{1352}{121}\)
b) \(3\sqrt{x-1}\) + \(4\sqrt{x-1}\) - \(9\sqrt{x-1}\) + 6 =0 <=> \(-2\sqrt{x-1}\) = -6 <=> \(\sqrt{x-1}\) = 3 <=> x-1 =9 <=> x= 10
a.\(\sqrt{x-2}=\sqrt{4-x}\)
đk: \(\left\{{}\begin{matrix}x-2\ge0\\4-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le4\end{matrix}\right.\Leftrightarrow2\le x\le4\)
pt đã cho tương đương với
\(x-2=4-x\)
\(\Leftrightarrow2x=6\Rightarrow x=3\left(TM\right)\)
b.\(\sqrt{x^2-8x+6}=x+2\)
đk: \(x+2\ge0\Rightarrow x\ge-2\)
pt đã cho tương đương với
\(x^2-8x+6=\left(x+2\right)^2\)
\(\Leftrightarrow x^2-8x+6=x^2+4x+4\)
\(\Leftrightarrow-12x=-2\Rightarrow x=\frac{1}{6}\left(TM\right)\)
c.\(\sqrt{2x-1}+5=\sqrt{8x-4}\)
\(\Leftrightarrow\sqrt{2x-1}+5=\sqrt{4\left(2x-1\right)}\)
\(\Leftrightarrow\sqrt{2x-1}+5=2\sqrt{2x-1}\)
\(\Leftrightarrow\sqrt{2x-1}=5\)
đk: \(2x-1\ge0\Leftrightarrow x\ge\frac{1}{2}\)
pt tương đương: \(2x-1=25\)
\(\Leftrightarrow2x=26\Rightarrow x=13\left(TM\right)\)
d.\(\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)
\(\Leftrightarrow\sqrt{16\left(1-2x\right)}-\sqrt{4.3x}=\sqrt{3x}+\sqrt{9\left(1-2x\right)}\)
\(\Leftrightarrow4\sqrt{1-2x}-2\sqrt{3x}+3\sqrt{1-2x}\)
\(\Leftrightarrow\sqrt{1-2x}=3\sqrt{3x}\)
đk: \(\left\{{}\begin{matrix}1-2x\ge0\\3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{1}{2}\\x\ge0\end{matrix}\right.\Leftrightarrow0\le x\le\frac{1}{2}\)
pt tương đương: \(1-2x=9.3x\)
\(\Leftrightarrow29x=1\Rightarrow x=\frac{1}{29}\left(TM\right)\)
e. \(\sqrt{x^2-9}-\sqrt{4x-12}=0\)
đk: \(\left\{{}\begin{matrix}\left(x-3\right)\left(x+3\right)\ge0\\4x-12\ge0\end{matrix}\right.\Leftrightarrow x\ge3\)
pt đã cho tương đương với
\(\sqrt{\left(x-3\right)\left(x+3\right)}-\sqrt{4\left(x-3\right)}=0\)
\(\Leftrightarrow\sqrt{x-3}.\sqrt{x+3}-2\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}.\left(\sqrt{x+3}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\left(TM\right)\\\sqrt{x+3}=2\Leftrightarrow x+3=4\Rightarrow x=1\left(KTM\right)\end{matrix}\right.\)
Bài 2:Giải phương trình
a,\(\sqrt{8x-4}-2\sqrt{18x-9}+2\sqrt{32x-16}=12\)
b.\(\sqrt{x^2-6x+9}=2x-1\)
phần a đây nhé \(a,\sqrt{4\left(2x-1\right)}-2\sqrt{9\left(2x-1\right)}+2\sqrt{16\left(2x-1\right)}=12\Leftrightarrow2\sqrt{2x-1}-6\sqrt{2x-1}+8\sqrt{2x-1}=12\Leftrightarrow4\sqrt{2x-1}=12\Leftrightarrow\sqrt{2x-1}=3\Leftrightarrow\left\{{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
\(\sqrt{125}-2\sqrt{20}-3\sqrt{80}+4\sqrt{25}\)
\(=5\sqrt{5}-4\sqrt{5}-12\sqrt{5}+20\)
\(=20-11\sqrt{5}\)
~ ~ ~ ~ ~
\(\sqrt{8x}-\sqrt{18x}+2\sqrt{32x}=14\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{2}-3\sqrt{2}+8\sqrt{2}\right)=14\)
\(\Leftrightarrow\sqrt{x}\times7\sqrt{2}=14\)
\(\Leftrightarrow98x=196\)
\(\Leftrightarrow x=2\) (nhận)
b) Đk: \(0\le x\le4\)
Ta có: \(\sqrt{4x+x^2}+\sqrt{4x-x^2}=4x+1\)
<=> \(\left(\sqrt{4x+x^2}+\sqrt{4x-x^2}\right)^2=\left(4x+1\right)^2\)
<=> \(\left|4x+x^2\right|+\left|4x-x^2\right|+2\sqrt{\left(4x+x^2\right)\left(4x-x^2\right)}=16x^2+8x+1\)
<=> \(x^2+4x+4x-x^2+2x\sqrt{\left(4-x\right)\left(4+x\right)}=16x^2+8x+1\)
<=> \(2x\sqrt{16-x^2}=16x^2+8x+1-8x\)
<=> \(\left(2x\sqrt{16-x^2}\right)^2=\left(16x^2+1\right)^2\)
<=> \(4x^2\left|16-x^2\right|=256x^4+32x^2+1\)
<=> \(64x^2-4x^4=256x^4+32x^2+1\)
<=> \(260x^4-32x^2+1=0\)
Đặt x2 = k (k > 0) <=> 260k2 - 32k + 1 = 0
Ta có: \(\Delta=32^2-4.260=-16< 0\)
=> pt vô nghiệm
a)\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
ĐK:tự xác định
\(pt\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(x+1\right)=0\)
\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}\right)=0\)
Suy ra x=-1 là nghiệm và pt \(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow2\left(x+3\right)+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4\left(x+1\right)\)
\(\Leftrightarrow2\sqrt{2\left(x+3\right)\left(x-1\right)}=x-1\)
\(\Leftrightarrow8\left(x+3\right)\left(x-1\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(8x+24-x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x+25\right)=0\Rightarrow x=1\) (thỏa và 7x+25=0 loại do điều kiện....)
b nghiệm xấu quá để mình xem lại :v
\(\Leftrightarrow\sqrt{2x+6}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{2x+6}-2\sqrt{2}+\sqrt{x-1}=2\sqrt{x+1}-2\sqrt{2}\)
\(\Leftrightarrow\frac{2\left(x-1\right)}{\sqrt{2x+6}+2\sqrt{2}}+\sqrt{x-1}=\frac{2\sqrt{x-1}}{\sqrt{x+1}+2\sqrt{2}}\)
\(\Leftrightarrow\frac{2\sqrt{x-1}}{\sqrt{2x+6}+2\sqrt{2}}+1=\frac{2\sqrt{x-1}}{\sqrt{x+1}+1\sqrt{2}}\)
đến đây thì chịu
tìm đc 1 nghiệm là -1;1,nên bình phương lên
a) x=49
b) x=4
c) x = 2 hoặc x = -2
d) x= 11,17355372
e) x =10
f) x=2
g)x = 10 000 000 ( nếu theo đề của bạn) và x=0,94 ( nếu theo đề bđ)
h) x =4
k) x = 4/3 hoặc x = -2/3
l) x = 2,5
m) x = 0,5
n) x=-0,5
\(\sqrt{2x}-\sqrt{32x}+\sqrt{8x}\)
\(=\sqrt{2x}-\sqrt{4.8x}+\sqrt{8x}\)
\(=\sqrt{2x}-2\sqrt{8x}+\sqrt{8x}\)
\(=\sqrt{2x}-\sqrt{8x}\)
\(=\sqrt{2x}-\sqrt{2.4x}\)
\(=\sqrt{2x}-2\sqrt{2x}\)
\(=-\sqrt{2x}\)