Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\left(\sqrt{2};\sqrt{2}\right)\Rightarrow x=\sqrt{2};y=\sqrt{2}\) Thay vào hàm số \(y=\left(\sqrt{a}-2\right)x\) ta được :
\(\sqrt{2}=\left(\sqrt{a}-2\right)\sqrt{2}\)
\(\Rightarrow\sqrt{a}-2=1\)
\(\Rightarrow\sqrt{a}=3\)
\(\Rightarrow a=9\)
Vậy \(a=9\)
Biểu thức B đạt giá trị nhỏ nhất khi:B=\(\frac{1}{\sqrt{x}+2016}\) voi \(\sqrt{x}\) =0 ta co B=\(\frac{1}{0+2016}\) =\(\frac{1}{2016}\)
Tu \(-\sqrt{30}\) den \(\sqrt{30}\) co 5 so nguyen chia het cho 2 la -4;-2;0;2;4
Tu \(\sqrt{5}\) den \(\sqrt{60}\) co 2 so nguyen chia het cho 3 la 3;6
Tu $-\sqrt{30}$ den $\sqrt{30}$
co 5 so nguyen chia het cho 2 la -4;-2;0;2;4
Tu $\sqrt{5}$
den $\sqrt{60}$ co 2 so nguyen chia het cho 3 la 3;6
ABCd là hình vuông nên
AB=BC=\(3\sqrt{2}\left(cm\right)\)
áp dụng định lý py-ta-go vào tam giác ABC vuông tại B có:
AC2=AB2+BC2
AC2=2.\(\left(3\sqrt{2}\right)^2\)
AC2=36
=>AC=6(cm)
2,65
\(\approx2,6\)