K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2018

\(\sqrt{\frac{a+b}{2}}=\sqrt{\frac{2\left(a+b\right)}{4}}\)

                    \(=\frac{\sqrt{2\left(a+b\right)}}{2}\ge\frac{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2}}{2}=\frac{\sqrt{a}+\sqrt{b}}{2}\)

Dấu "=" xảy ra khi a=b

Cần thêm điều kiện là \(a,b\ge0\)

Chúc bạn học tốt

8 tháng 8 2019

toán lớp 1 ??? giỡn quài , phi logic :3

8 tháng 8 2019

Ap dung bdt AM-GM cho 2 so ko am A,B ta co 

\(\sqrt{A}+\sqrt{B}\)\(\le\)\(2\sqrt{\frac{A+B}{2}}\)

VP =\(\sqrt{AB}.\left(\sqrt{A}+\sqrt{B}\right)\le\frac{A+B}{2}.2\sqrt{\frac{A+B}{2}}\)

    =>VP2 \(\le4.\frac{\left(A+B\right)^3}{4}=\left(A+B\right)^3\left(3\right)\)

Tu (2),(3) => DPCM

What??!!!!!!!

Đây là bài toán lớp 1 ???

Bn có nhầm ko z??

đây mà gọi là toán lớp 1 hả trời ??????????????????????

6 tháng 3 2019

bn lên mạng hoặc vào câu hỏi tương tự nha!

chúc bn hok tốt!

hahaha!

#conmeo#

9 tháng 1 2021

bạn trung học hay tiểu học vậy

9 tháng 12 2015

tớ đăng bài này làm hộ ng bạn đấy :b

10 giờ trước (11:46)

Đúng rồi đó bạn.

26 tháng 11 2021

cái này mà là toán lớp 1 á chịu thua ko giải được

26 tháng 11 2021

tôi ko hiẻu bạn đang nói cái méo gì

14 tháng 9 2018

xét hiệu: \(\frac{a+b}{2}-\sqrt{ab}\), ta được

\(\frac{a+b}{2}-\sqrt{ab}=\)\(\frac{a+b-2\sqrt{ab}}{2}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\)

do \((\sqrt{a}-\sqrt{b})^2\ge0\)với mọi x, y nên \(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\ge0\)

dấu "=" xảy ra khi a=b

phải có cả điều kiện là x,y không âm nữa bạn nhé

14 tháng 9 2018

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)

Dấu "=" xảy ra khi a=b

3 tháng 8 2020

1+1+1+1+1+2=7

3 tháng 8 2020

đặt \(\sqrt{a^2+\frac{1}{a^2}}+\sqrt{b^2+\frac{1}{b^2}}+\sqrt{c^2+\frac{1}{c^2}}=P\)

phương pháp khảo sát hàm đặc trưng rất hữu hiệu cho những bài bất đẳng thức đối xứng

bài toán cho f(x)+f(y)-f(z) >= A

tìm min, max của S-g(x)+g(y)+g(z)

*nháp

điều kiện x,y,z thuộc D, dự đoán dấu bằng xảy ra khi x=y=z=\(\alpha\). Khảo sát hàm đặc trưng h(t)-g(t)-mf(t) với m=\(\frac{g'\left(\alpha\right)}{f'\left(\alpha\right)}\)sau khi đã tìm được m chỉ cần xét đạo hàm h(t) nữa là xong

ta khảo sát hàm \(f\left(x\right)=\sqrt{x^2+\frac{1}{x^2}}-mx\)

để hàm số có cực tiểu thì f(x)=0 \(\Leftrightarrow\frac{x^4-1}{x^3\sqrt{x^2+\frac{1}{x^2}}}-m=0\)nhận thấy "=" ở x=\(\frac{1}{3}\)nên m=\(\frac{80}{-\sqrt{82}}\)

xét hàm số đại diện f(t)=\(\sqrt{t^2+\frac{1}{t^2}}-\frac{80}{\sqrt{82}}t\)trên (0;1) có f(t)\(\ge f\left(\frac{1}{3}\right)=\frac{162}{3\sqrt{82}}\)

vậy thì \(P\ge-\frac{80}{\sqrt{82}}\left(x+y+z\right)+\frac{162}{\sqrt{82}}=\sqrt{82}\)

bài toán được chứng minh xong