Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B= \(\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]^2\)
ta thấy : \(\left(x+\frac{1}{2}\right)^2\ge0\)
=> \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
=>\(\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]^2\ge\frac{9}{16}\)
=> min B=9/16 kh x=-1/2
C= \(x^2-2xy+y^2+1\)= \(\left(x-y\right)^2+1\)
ta có \(\left(x-y\right)^2\ge0\)=>\(\left(x-y\right)^2+1\ge1\)
=> Min C=1 khi x=y
a/ \(y=\frac{1}{4}.4x\left(1-x\right)\left(1-x\right)\left(1-x\right)\left(1-x\right)\)
\(y\le\frac{1}{4}\left(\frac{4x+1-x+1-x+1-x+1-x}{5}\right)^5=\frac{4^4}{5^5}\)
Dấu "=" xảy ra khi \(4x=1-x\Leftrightarrow x=\frac{1}{5}\)
b/ \(y=\frac{x-3}{3}+\frac{48}{x-3}\ge2\sqrt{\frac{48\left(x-3\right)}{3\left(x-3\right)}}=8\)
Dấu "=" xảy ra khi \(\left(x-3\right)^2=144\Rightarrow x=15\)
Câu 1: đáp án B, thay tọa độ A vào pt được \(1\le0\) (sai)
Câu 2: đáp án D
\(\left(m+n\right)^2\ge4mn\Leftrightarrow m^2+n^2+2mn\ge4mn\Leftrightarrow m^2+n^2\ge2mn\)
Câu 3: đáp án D
\(m=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{4}{2}=2\)
Câu 4:
\(\Leftrightarrow5x-\frac{2}{5}x>4\Leftrightarrow\frac{23}{5}x>4\Leftrightarrow x>\frac{20}{23}\)
Câu 5:
\(f\left(x\right)>0\Leftrightarrow23x-20>0\Leftrightarrow x>\frac{20}{23}\) đáp án C
Câu 6:
Bạn viết sai đề, nhìn BPT đầu tiên \(2x-5-1>0\) là thấy có vấn đề
Câu 7:
\(3x+2\left(y+3\right)>4\left(x+1\right)-y+3\)
\(\Leftrightarrow x-3y+1< 0\)
Thay tọa độ D vào ta được \(-1< 0\) đúng nên đáp án D đúng
Câu 8:
Thay tọa độ vào chỉ đáp án D thỏa mãn
Câu 9:
Đáp án C đúng
Câu 10:
Đáp án B đúng (do tọa độ x âm ko thỏa mãn BPT đầu tiên)
Bảng biến thiên
Từ bảng biến thiên ta có
Chọn B.