Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-2x+3=0\Leftrightarrow x=\dfrac{3}{2}\); \(x-2=0\Leftrightarrow x=2\); \(x+4=0\Leftrightarrow x=-4\).
Ta có:
TenAnh1
TenAnh1
B = (11.24, -6.26)
B = (11.24, -6.26)
B = (11.24, -6.26)
C = (-0.38, -6.9)
C = (-0.38, -6.9)
C = (-0.38, -6.9)
D = (14.98, -6.9)
D = (14.98, -6.9)
D = (14.98, -6.9)
E = (-0.4, -6.68)
E = (-0.4, -6.68)
E = (-0.4, -6.68)
F = (14.96, -6.68)
F = (14.96, -6.68)
F = (14.96, -6.68)
Vậy \(f\left(x\right)=0\) khi \(x=\left\{-4;\dfrac{3}{2};2\right\}\).
\(f\left(x\right)>0\) khi \(\left(-\infty:-4\right)\cup\left(\dfrac{3}{2};2\right)\).
\(f\left(x\right)< 0\) khi \(\left(-4;\dfrac{3}{2}\right)\cup\left(2;+\infty\right)\).
\(2x+1=0\Leftrightarrow x=-\dfrac{1}{2}\);\(x-1=0\Leftrightarrow x=1\); \(x+2=0\Leftrightarrow x=-2\).
TenAnh1
TenAnh1
B = (11.24, -6.26)
B = (11.24, -6.26)
B = (11.24, -6.26)
C = (-0.38, -6.9)
C = (-0.38, -6.9)
C = (-0.38, -6.9)
D = (14.98, -6.9)
D = (14.98, -6.9)
D = (14.98, -6.9)
E = (-0.4, -6.68)
E = (-0.4, -6.68)
E = (-0.4, -6.68)
F = (13.84, -6.58)
F = (13.84, -6.58)
F = (13.84, -6.58)
G = (0.82, -8.58)
G = (0.82, -8.58)
G = (0.82, -8.58)
H = (16.18, -8.58)
H = (16.18, -8.58)
H = (16.18, -8.58)
I = (-0.56, -6.62)
I = (-0.56, -6.62)
I = (-0.56, -6.62)
J = (14.8, -6.62)
J = (14.8, -6.62)
J = (14.8, -6.62)
K = (-0.36, -6.84)
K = (-0.36, -6.84)
K = (-0.36, -6.84)
L = (15, -6.84)
L = (15, -6.84)
L = (15, -6.84)
Vậy \(f\left(x\right)=0\) khi \(x=\dfrac{1}{2}\);
\(f\left(x\right)>0\) khi \(x\in\left(-2;-\dfrac{1}{2}\right)\cup\left(1;+\infty\right)\).
\(f\left(x\right)< 0\) khi \(x\in\left(-\infty;-2\right)\cup\left(-\dfrac{1}{2};1\right)\).
a) F(x) = \(-x^2\left(x-1\right)\left(x+2\right)\left(x+2\right)=\left(1-x\right)x^2\left(x+2\right)^2\\ \)
\(\left\{{}\begin{matrix}x^2\ge0\\\left(x+2\right)^2\ge0\end{matrix}\right.\) => dấu biểu thức chỉ phụ thuộc vào thừa số (1-x)
F(x) =0 khi x={-2,0,1}
F(x) > 0 khi x<1 và khác -2 và 0
f(x) <0 khi x> 1
Tử f(x) =x^2(x^2-3x+2) =x^2(x-1)(x-2)
tương tự a) dấu của tử phụ thuộc (x-1)(x-2)
Mẫu f(x) =x^2 -x-30 =(x-5)(x+6)
Phần hỗ trợ Lập bảng đây khó thao tác
=> viết bằng hệ {điểm tới hạn xet x={-6,0,1,2,5}
Khi => \(\left[{}\begin{matrix}x=0\\x=1\\x=2\end{matrix}\right.\)=>f(x) =0
Khi \(\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\) => f(x) không xác định
Khi \(x< -6\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)>0\end{matrix}\right.\)\(\Rightarrow f\left(x\right)>0\)
khi -6<x<1 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)< 0\end{matrix}\right.\) => f(x) <0
khi 1<x<2 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)< 0\\Mf\left(x\right)< 0\end{matrix}\right.\) => f(x) >0
khi 2<x<5 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)< 0\end{matrix}\right.\) => f(x) <0
khi x>5 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)>0\end{matrix}\right.\) => f(x) >0
Các nghiệm này chia khoảng thành ba khoảng, trong mỗi khoảng các nhị thức đã cho có dấu hoàn toàn xác định.
Từ bảng xét dấu ta thấy:
Trả lời câu hỏi Toán 10 Đại số Bài 3 trang 92: Giải bất phương trình x3 – 4x < 0.
Lời giải
x3 – 4x < 0 ⇔ x(x2 - 4) < 0 ⇔ x(x - 2)(x + 2) < 0
Ta có bảng xét dấu
Từ bảng xét dấu ta có tập nghiệm của bất phương trình là:
S = (-∞;2) ∪ (0;2)
a) Ta lập bảng xét dấu
Kết luận: f(x) < 0 nếu - 3 < x <
f(x) = 0 nếu x = - 3 hoặc x =
f(x) > 0 nếu x < - 3 hoặc x > .
b) Làm tương tự câu a).
f(x) < 0 nếu x ∈ (- 3; - 2) ∪ (- 1; +∞)
f(x) = 0 với x = - 3, - 2, - 1
f(x) > 0 với x ∈ (-∞; - 3) ∪ (- 2; - 1).
c) Ta có: f(x) =
Làm tương tự câu b).
f(x) không xác định nếu x = hoặc x = 2
f(x) < 0 với x ∈ ∪
f(x) > 0 với x ∈ ∪ (2; +∞).
d) f(x) = 4x2 – 1 = (2x - 1)(2x + 1).
f(x) = 0 với x =
f(x) < 0 với x ∈
f(x) > 0 với x ∈ ∪
a) 3x^3 -10x+3 =(3x-1)(x-3)
x | -vc | 1/3 | 5/4 | 3 | +vc | |||||||||
3x-1 | - | 0 | + | + | + | + | + | |||||||
x-3 | - | - | - | - | - | 0 | + | |||||||
4x-5 | - | - | - | 0 | + | + | + | |||||||
VT | - | 0 | + | 0 | - | 0 | + |
Kết luận
VT< 0 {dấu "-"} khi x <1/3 hoắc 5/4<x<3
VT>0 {dấu "+"} khi x 1/3<5/4 hoặc x> 3
VT=0 {không có dấu} khi x={1/3;5/4;3}
f(x) = (4x2 – 1)(–8x2 + x – 3)(2x + 9)
+ Tam thức 4x2 – 1 có hai nghiệm x = –1/2 và x = 1/2, hệ số a = 4 > 0
Do đó 4x2 – 1 mang dấu + nếu x < –1/2 hoặc x > 1/2 và mang dấu – nếu –1/2 < x < 1/2
+ Tam thức –8x2 + x – 3 có Δ = –95 < 0, hệ số a = –8 < 0 nên luôn mang dấu –.
+ Nhị thức 2x + 9 có nghiệm x = –9/2.
Ta có bảng xét dấu:
Kết luận:
f(x) > 0 khi x ∈ (–∞; –9/2) ∪ (–1/2; 1/2)
f(x) = 0 khi x ∈ {–9/2; –1/2; 1/2}
f(x) < 0 khi x ∈ (–9/2; –1/2) ∪ (1/2; +∞)
Nhị thức 2x – 1 có nghiệm là 1/2 ; nhị thức x + 3 có nghiệm là –3.
Ta có bảng xét dấu
Kết luận :
+ f(x) > 0 khi x < –3 hoặc x > 1/2
+ f(x) < 0 khi –3 < x < 1/2
+ f(x) = 0 khi x = –3 hoặc x = 1/2.