K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2018

Có lẽ là BĐT Cô-si

cứ cho a,b,c>0 thì phải nghĩ ngay đến BĐT cô-si

30 tháng 12 2018

\(A=\frac{a}{\sqrt{3+a^2}}+\frac{b}{\sqrt{3+b^2}}+\frac{c}{\sqrt{3+c^2}}\)

\(=\frac{a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+bc+ca+ab}}+\frac{c}{\sqrt{c^2+ca+ab+bc}}\)

\(=\frac{\sqrt{a}\cdot\sqrt{a}}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{\sqrt{b}\cdot\sqrt{b}}{\sqrt{\left(b+c\right)\left(a+b\right)}}+\frac{\sqrt{c}\cdot\sqrt{c}}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

\(=\frac{\sqrt{a}}{\sqrt{a+b}}\cdot\frac{\sqrt{a}}{\sqrt{c+a}}+\frac{\sqrt{b}}{\sqrt{b+c}}\cdot\frac{\sqrt{b}}{\sqrt{a+b}}+\frac{\sqrt{c}}{\sqrt{c+a}}\cdot\frac{\sqrt{c}}{\sqrt{c+b}}\)

\(\le\frac{\frac{a}{a+b}+\frac{a}{c+a}}{2}+\frac{\frac{b}{b+c}+\frac{b}{a+b}}{2}+\frac{\frac{c}{c+a}+\frac{c}{b+c}}{2}\)

\(=\frac{\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}}{2}=\frac{3}{2}\)

Vậy Max A = 3/2 khi a = b = c = 1. (Max not Min) 

5 tháng 11 2019

\(VT=\frac{a^3}{a^2+abc}+\frac{b^3}{b^2+abc}+\frac{c^3}{c^2+abc}\)

Xét \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)

\(\Rightarrow VT=\frac{a^3}{a^2+ab+bc+ac}+\frac{b^3}{b^2+ab+bc+ac}+\frac{c^3}{c^2+ab+bc+ac}\)

\(\Leftrightarrow VT=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+a\right)\left(b+c\right)}+\frac{c^3}{\left(c+b\right)\left(c+a\right)}\)

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)

Thiết lập tương tự và thu lại ta có :
\(VT+\frac{a+b+c}{2}\ge\frac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{2}\left(a+b+c\right)=\frac{a+b+c}{4}\) ( đpcm)
Dấu " = " xảy ra khi \(a=b=c=3\)

Chúc bạn học tốt !!!

5 tháng 2 2020

Giả sử \(c=min\left\{a,b,c\right\}\)và đặt \(2t=a+b=-c\Rightarrow t=-\frac{c}{2}\)

+)Nếu \(c\ge0\) thì \(a,b\ge0\). Khi đó: \(P\ge3\)

Đẳng thức xảy ra khi \(a=b=c=0\)

+) Nếu \(c< 0\Rightarrow t>0\). Ta có:

\(P\ge\frac{\left(a^2+b^2+2\right)^2}{2}+\left(c^2+1\right)^2+\frac{3\sqrt{6}c\left(a+b\right)^2}{2}\) (vì c < 0)

\(\ge\frac{\left[\frac{\left(a+b\right)^2}{2}+2\right]^2}{2}+\left(c^2+1\right)^2+3\sqrt{6}c.\frac{\left(a+b\right)^2}{2}\)

\(=\frac{\left(2t^2+2\right)^2}{2}+\left(c^2+1\right)^2+6\sqrt{6}t^2c\)

\(=\frac{\left[2\left(-\frac{c}{2}\right)^2+2\right]^2}{2}+\left(c^2+1\right)^2+6\sqrt{6}\left(-\frac{c}{2}\right)^2c\)

\(=\frac{9}{8}c^2\left(c+\frac{2\sqrt{6}}{3}\right)^2+3\ge3\)

\(\left(a;b;c\right)=\left(\sqrt{\frac{2}{3}};\sqrt{\frac{2}{3}};-2\sqrt{\frac{2}{3}}\right)\) (và các hoán vị, trong trường hợp tổng quát)

Vậy....

P/s: Em không chắc lắm, chưa check lại.

12 tháng 9 2021

Ta có: \(\sqrt{2}>0\)

\(\Rightarrow b\sqrt{2}\ge0\)

Mà \(a+b\sqrt{2}=0\)

\(\Rightarrow b=0,a=0\)

 

 

12 tháng 9 2021

OH-YEAH^^                                                         , bn ơi b thuộc Q thì làm sao mà \(b\sqrt{2}\ge0\) được

8 tháng 11 2017

\(a\sqrt{2}+b\sqrt{3}=-c\)

\(\Leftrightarrow2a+3b+2ab\sqrt{6}=c^2\)

\(\Leftrightarrow2ab\sqrt{6}=c^2-2a-3b\)

Vì VT là số vô tỷ còn VP là số hữu tỷ nên để 2 vế bằng nhau thì.

\(\Rightarrow\hept{\begin{cases}ab=0\\c^2-2a-3b=0\end{cases}}\)

Với \(a=0\)

\(\Rightarrow b\sqrt{3}=-c\)

\(\Rightarrow b=c=0\)

Với \(b=0\)

\(\Rightarrow a\sqrt{2}=-c\)

\(\Rightarrow a=c=0\)

Vậy \(a=b=c=0\)