K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2017

Để phương trình đã cho có 2 nghiệm buộc:

\(\Delta\)'\(\ge0\)

\(\Leftrightarrow\left(-m\right)^2+m+3=0\\ \Leftrightarrow\left(m-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\veebar m\)

Do đó với mọi m thì phương trình đã cho có 2 nghiệm

Theo hệ thức viet ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m\\x_1.x_2=\dfrac{c}{a}=-m-3\end{matrix}\right.\)

Từ giả thuyết \(\left|x_1\right|=\left|x_2\right|\\ \Leftrightarrow x_1^2=x_2^2\\ \Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)=0\\ \Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}.\left(x_1+x_2\right)=0\)

\(\Leftrightarrow\sqrt{\left(2m\right)^2+4m+12}.2m=0\\ \Leftrightarrow m=0\)(vì căn của 4m^2+4m+12>0)

4 tháng 4 2022

Phương trình 2 nghiệm phân biệt khi 

\(\Delta=\left(1-m\right)^2-4\left(-m\right).1=\left(m+1\right)^2>0\)

\(\Leftrightarrow m\ne-1\)

Hệ thức Vière : \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-m\end{cases}}\)

Khi đó \(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)

<=> \(-x_1x_2+5\left(x_1+x_2\right)\ge-21\)

<=> \(-\left(-m\right)+5\left(m-1\right)\ge-21\)

\(\Leftrightarrow6m\ge-16\Leftrightarrow m\ge-\frac{8}{3}\)

Kết hợp điều kiện => \(\hept{\begin{cases}m\ge-\frac{8}{3}\\m\ne-1\end{cases}}\)thì thỏa mãn bài toán 

NV
5 tháng 4 2022

\(\Delta=\left(1-m\right)^2+4m=\left(m+1\right)^2>0\Rightarrow m\ne-1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-m\end{matrix}\right.\)

\(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)

\(\Leftrightarrow5\left(x_1+x_2\right)-x_1x_2\ge-21\)

\(\Leftrightarrow5\left(m-1\right)+m\ge-21\)

\(\Leftrightarrow m\ge-\dfrac{8}{3}\)

Kết hợp điều kiện ban đầu ta được: \(\left\{{}\begin{matrix}m\ne-1\\m\ge-\dfrac{8}{3}\end{matrix}\right.\)

18 tháng 2 2020

a. thay m=1 vào pt(1): \(x^2-2.2x+2-4=0\)

<=>\(x^2-4x-2=0\)

\(\Delta'=\left(-2\right)^2-1.\left(-2\right)=4+2=6>0\)

=>\(x_1=-\left(-2\right)+\sqrt{6}=2+\sqrt{6};x_2=2-\sqrt{6}\)

Vậy,,,

b, \(\Delta'=\left[-\left(m+1\right)\right]^2-1.\left(2m-4\right)=m^2+2m+1-2m+4=m^2+5\)

Để pt(1) có 2 nghiệm phân biệt x1,x2 <=>\(\Delta'>0\Leftrightarrow m^2+5>0\) (luôn đúng)

Theo hệ thức vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m-4\end{cases}}\)

Theo bài ra ta co;\(\frac{1}{x_1}+\frac{1}{x_2}=2\Leftrightarrow\frac{x_1+x_2}{x_1x_2}=2\Leftrightarrow\frac{2m+2}{2m-4}=2\)

\(\Leftrightarrow2m+2=4m-8\Leftrightarrow2m=10\Leftrightarrow m=5\)

26 tháng 4 2019

\(\Delta'=\left(-m\right)^2-2m^2+1\)

=\(m^2-2m^2+1\)

=\(-m^2+1\) \(\Rightarrow-m^2+1>0\Leftrightarrow m< 1\)

theo vi-et ta có \(x_1+x_2=-2m\)

\(x_1.x_2=2m^2-1\)

theo đề bài ta có \(\left(x_1\right)^3+\left(x_2\right)^3-\left(x_1\right)^2-\left(x_2\right)^2=-2\)

\(\Leftrightarrow\)\(\left(x_1+x_2\right).\left(x_1^2-x_1.x_2+x_2^2\right)\) = 4

\(\Leftrightarrow\left(x_1+x_2\right).[\left(x_1+x_2\right)^2-3x_1.x_2]\) =4

\(\Leftrightarrow-2m.[\left(-2m\right)^2-3.\left(2m^2-1\right)]\)=4

\(\Leftrightarrow-2m.\left(4m^2-6m^2+3\right)\)=4

\(\Leftrightarrow-2m.\left(-2m^2-3\right)\) =4

\(\Leftrightarrow4m^2+6m\) =4

\(\Leftrightarrow4m^2+6m-4=0\)

\(\Delta=6^2-4.4.\left(-4\right)=36+64=100>0\) =>\(\sqrt{\Delta}=\sqrt{100}=50\)

phương trình có 2 ngiệm \(x_1=\frac{11}{2}\),\(x_2=-7\)

với \(x_2=-7\) thỏa mãn đk

26 tháng 4 2019

bài này thì mk ko chắc đúng ko từ \(-2m.\left(-2m^2-3\right)\) trở lên là đúng

NV
27 tháng 4 2019

Gọi \(a=x_1\)\(b=x_2\) gõ cho lẹ

\(\Delta'=m^2-2m^2+1=1-m^2\ge0\Rightarrow-1\le m\le1\)

Theo Viet ta có: \(\left\{{}\begin{matrix}a+b=2m\\ab=2m^2-1\end{matrix}\right.\)

\(A=a^3+b^3-\left(a^2+b^2\right)=\left(a+b\right)^3-3ab\left(a+b\right)-\left(a+b\right)^2+2ab\)

\(A=8m^3-6m\left(2m^2-1\right)-4m^2+2\left(2m^2-1\right)\)

\(A=-4m^3+6m-2=-2\)

\(\Leftrightarrow4m^3-6m=0\)

\(\Leftrightarrow2m\left(2m^2-3\right)=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-\frac{\sqrt{6}}{2}< -1\left(l\right)\\m=\frac{\sqrt{6}}{2}>1\left(l\right)\end{matrix}\right.\)

5 tháng 4 2020

Bài 1:

\(x^2-2mx+m^2-m-6=0\)

Xét \(\Delta=\left(-2m\right)^2-4\left(m^2-m-6\right)=4m^2-4m^2+4m+24=4m+24>0\Rightarrow m>-6\)

Theo hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x1+x2=2m\\x1.x2=m^2-m-6\end{matrix}\right.\)

Theo bài ra:

\(\left|x1\right|+\left|x2\right|=8\)

\(\Rightarrow\left(\left|x1\right|+\left|x2\right|\right)^2=64\)

\(\Rightarrow\left(x1+x2\right)^2-2x1x2+2\left(\left|x1x2\right|\right)=64\)

\(\Leftrightarrow\left(2m\right)^2-2.\left(m^2-m-6\right)+2\left(\left|m^2-m-6\right|\right)=64\)

\(\Leftrightarrow\left(2m\right)^2=64\Leftrightarrow4m^2-64=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=4\\m=-4\end{matrix}\right.\) (tm)

26 tháng 1 2019

a. Có : \(\Delta=\left(-2m\right)^2-4\left(m-2\right)\)

=\(4m^2-4m+8\)

=​\(4\left(m-1\right)^2+4>0\forall m\in R\)

Vậy pt luôn có 2 nghiệm phân biệt với mọi m.

Thầy ơi, tại sao em không dùng được hộp gõ công thức trực quan vậy thầy, nó cứ nhảy xuống không?

26 tháng 1 2019

:'v Câu b mới căng não cậu ạ

10 tháng 5 2019

Thay m=1 vào phương trình trên \(\Leftrightarrow x^2-2.1x-3=0\Leftrightarrow x^2-2x-3=\left(x-3\right)\left(x+1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

b) Ta có a và c trái dấu (1 và -3 trái dấu) nên phương trình có 2 nghiệm phân biệt với mọi m

Theo định lí Vi-ét ta có \(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=\frac{2m}{1}=2m\\x_1x_2=\frac{c}{a}=\frac{-3}{1}=-3\end{matrix}\right.\)

\(x_1x_2=-3\) nên phương trình có 1 nghiệm âm và 1 nghiệm dương

Giả sử \(x_1< 0\)

Vậy \(x_2-x_1=6\Leftrightarrow x_1+x_2-2x_1=6\Leftrightarrow x_1=\frac{2m-6}{2}=m-3\)

\(\Rightarrow x_2=2m-x_1=2m-\left(m-3\right)=m+3\)

\(x_1x_2=-3\Leftrightarrow\left(m-3\right)\left(m+3\right)=-3\Leftrightarrow m^2-9=-3\Leftrightarrow m^2=6\Leftrightarrow m=\pm\sqrt{6}\)

9 tháng 5 2019

a) phương trình (1) có a=m-1 b'=b/2 = -m-1 c=m

 \(\Delta=b'^2-ac=\left(-m-1\right)^2-\left(m-1\right)\cdot m\)
\(=m^2+2m+1-m^2+m=3m+1\)
Phương trình có hai nghiệm <=> \(\Delta\ge0\Leftrightarrow3m+1\ge0\Leftrightarrow m\ge-\frac{1}{3}\)

b) Khi phương trình có hai nghiệm x1, x2, theo hệ thức Vi-ét ta có

\(\hept{\begin{cases}x_1+x_2=\frac{2m+2}{m-1}=2+\frac{4}{m-1}\\x_1\cdot x_2=\frac{m}{m-1}=1+\frac{1}{m-1}\end{cases}}\)
\(\Rightarrow x_1+x_2-4x_1\cdot x_2=-2\)

9 tháng 5 2019

Sửa delta thành delta' nha, lúc nãy quên