Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(BAC=60^o\Rightarrow ABH=30^o\Rightarrow AH=\dfrac{AB}{2}\left(1\right)\)
Áp dụng định lý Pytago ta có:
\(AB^2=AH^2+BH^2\) và \(BC^2=BH^2+HC^2\)
\(\Rightarrow BC^2=AB^2-AH^2+AC^2-2.AC.AH+AH^2\)
\(\Rightarrow BC^2=AB^2+AC^2-2AH.AC\left(2\right)\)
Từ (1) và (2) \(\Rightarrowđfcm\)
Bài 1) .
Ta có : AB =AC ( gt)
=> ∆ABC cân tại A
=> B = C
Xét ∆ ABE và ∆ ACD ta có
AD = DE ( gt)
AB = AC ( gt)
B = C ( cmt)
=> ∆ABE = ∆ACD ( c.g.c)
=> EAB = DAC (dpcm)
b) Vì M là trung điểm BC
=> BM = MC
Mà ∆ABC cân tại A ( cmt)
=> AM là trung tuyến ∆ABC
=> AM là trung tuyến đồng thời là đường cao và phân giác ∆ABC
Mà D,E thuộc BC
AM vuông góc với DE
Mà ∆ADE cân tại A ( AD = AE )
=> AM là đường cao đồng thời là phân giác và trung tuyến ∆ ADE
=> AM là phân giác DAE
c) Vì AM là phân giác DAE
=> DAM = EAM = 60/2 = 30 độ
= > Mà AM vuông góc với DE (cmt)
=> AME = AMD = 90 độ
=> AME + MAE + AEM = 180 độ
=> AEM = 180 - 90 - 30 = 60 độ
Mà ∆ADE cân tại A
=> ADE = AED = 60 độ
Bài 2)
Trong ∆ABC có A = 90 độ
=> BAC = 90 độ :))))))
b2 :
a, xét tam giác ABD và tam giác ACE có: góc A chung
AB = AC do tam giác ABC cân tại A (gt)
góc ADB = góc AEC = 90
=> tam giác ABD = tam giác ACE (ch-cgv)
b, tam giác ABD = tam giác ACE (câu a)
=> góc ABD = góc ACE (đn)
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
góc HBC = góc ABC - góc ABD
góc HCB = góc ACB - góc ACE
=> góc HBC = góc HCB
=> tam giác HBC cân tại H (Dh)
A B C H
kẻ BH _|_ AC
xét tam giác ABH vuông tại H => ^ABH + ^BAH = 90 (đl)
^BAH = 60 (Gt)
=> ^ABH = 30; xét tam giác ABH vuông tại H
=> AH = AB/2 (đl)
=> AB = 2AH (1)
Tam giác ABH vuông tại H => HA^2 + HB^2 = AB^2 (pytago)
=> BH^2 = AB^2 - AH^2 (2)
xét tam giác BHC vuông tại H => BC^2 = HB^2 + HC^2 (pytago)
có HC = AC - AH
=> BC^2 = HB^2 + (AC - AH)^2
=> BC^2 = HB^2 + AC^2 - 2AH.AC + AH^2 và (1)(2)
=> BC^2 = AB^2 - AH^2 + AC^2 - AB.AC + AH^2
=> BC^2 = AB^2 + AC^2 - AB.AC