Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
=>(x-5)*3/10=1/5x+5
=>3/10x-3/2=1/5x+5
=>1/10x=5+3/2=6,5
=>0,1x=6,5
=>x=65
Bài 1:
a, \(\left(x-2\right)^2=9\)
\(\Rightarrow x-2\in\left\{-3;3\right\}\Rightarrow x\in\left\{-1;5\right\}\)
b, \(\left(3x-1\right)^3=-8\)
\(\Rightarrow3x-1=-2\Rightarrow3x=-1\)
\(\Rightarrow x=-\dfrac{1}{3}\)
c, \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)
\(\Rightarrow x+\dfrac{1}{2}\in\left\{-\dfrac{1}{4};\dfrac{1}{4}\right\}\)
\(\Rightarrow x\in\left\{-\dfrac{3}{4};-\dfrac{1}{4}\right\}\)
d, \(\left(\dfrac{2}{3}\right)^x=\dfrac{4}{9}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\left(\dfrac{2}{3}\right)^2\)
Vì \(\dfrac{2}{3}\ne\pm1;\dfrac{2}{3}\ne0\) nên \(x=2\)
e, \(\left(\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{16}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{x-1}=\left(\dfrac{1}{2}\right)^4\)
Vì \(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(x-1=4\Rightarrow x=5\)
f, \(\left(\dfrac{1}{2}\right)^{2x-1}=8\) \(\Rightarrow\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^{-3}\) Vì \(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(2x-1=-3\) \(\Rightarrow2x=-2\Rightarrow x=-1\) Chúc bạn học tốt!!!Câu 2:
a: \(\Leftrightarrow12x-60=7x-5\)
=>5x=55
=>x=11
b: \(\Leftrightarrow\left(2x-3\right)^{2010}\left[\left(2x-3\right)^2-1\right]=0\)
=>(2x-3)(2x-2)(2x-4)=0
hay \(x\in\left\{\dfrac{3}{2};1;2\right\}\)
n lớn hơn 2 và ko chia hết cho 3 nên n tồn tại dưới 2 dạng là 3k+1 hoặc 3k+2
Nếu n có dạng 3k + 2
n^2 + 1 = ( 3k + 2 )^2 + 1 = 9k^2 + 12k + 5
n^2 - 1 = 9k^2 + 12k + 3 chia hết cho 3
=> Ko thể đồng thời là số nguyên tố
Nếu n có dạng 3k + 1
n^2 + 1= ( 3k + 1 )^2 + 1 = 9k^2 + 6k + 2
n^2 - 1= ( 3k + 1 )^2 - 1 = 9k^2 + 6k chia hết cho 3
=> Ko thể đồng thời là số nguyên tố
Vậy với n thuộc N , n > 2 và ko chia hết cho 3 thì n^2 + 1 và n^2 - 1 ko thể đồng thời là số nguyên tố
\(VP=\dfrac{1}{n}-\dfrac{1}{n+a}=\dfrac{n+a}{n\left(n+a\right)}-\dfrac{n}{n\left(n+a\right)}=\dfrac{a}{n\left(n+a\right)}=VT\)
Ta có :
\(\dfrac{1}{n}-\dfrac{1}{n+a}=\dfrac{n+a}{n\left(n+a\right)}-\dfrac{n}{n\left(n+a\right)}=\dfrac{a}{n\left(n+a\right)}\)
Vậy \(\dfrac{1}{n}-\dfrac{1}{n+a}=\dfrac{a}{n\left(n+a\right)}hay\dfrac{a}{n\left(n+a\right)}=\dfrac{1}{n}-\dfrac{1}{n+a}\)
a) \(\dfrac{5}{7}-1\dfrac{4}{7}\left(450\%+\dfrac{2}{3}x\right)=\dfrac{-1}{14}\)
\(\dfrac{5}{7}-\dfrac{11}{7}\left(\dfrac{9}{2}+\dfrac{2}{3}x\right)=\dfrac{-1}{14}\)
\(\dfrac{11}{7}\left(\dfrac{9}{2}+\dfrac{2}{3}x\right)=\dfrac{5}{7}+\dfrac{1}{14}\)
\(\dfrac{11}{7}\left(\dfrac{9}{2}+\dfrac{2}{3}x\right)=\dfrac{11}{14}\)
\(\dfrac{9}{2}+\dfrac{2}{3}x=\dfrac{11}{14}:\dfrac{11}{7}=\dfrac{11}{14}.\dfrac{7}{11}\)
\(\dfrac{9}{2}+\dfrac{2}{3}x=\dfrac{1}{2}\)
\(\dfrac{2}{3}x=\dfrac{1}{2}-\dfrac{9}{2}=-4\)
\(x=-4:\dfrac{2}{3}=-4.\dfrac{3}{2}=-6\)
Vậy x = \(-6\)
b) \(100=6.7^{\left|x+2\right|}-194\)
\(100+194=6.7^{\left|x+2\right|}\)
\(294=6.7^{\left|x+2\right|}\)
\(294:6=49=7^{\left|x+2\right|}\)
\(\Rightarrow7^2=7^{\left|x+2\right|}\)
\(\Rightarrow2=\left|x+2\right|\Rightarrow\pm2=x+2\)
+ x + 2 = -2 \(\Rightarrow\) x = - 4
+ x + 2 = 2 \(\Rightarrow\) x = 0
Vậy x = - 4 hoặc 0
a) Để phân số \(\dfrac{3}{n-2}\) là số nguyên thì n - 2 \(⋮\) 3
\(\Rightarrow\) n - 2 \(\in\) Ư(3)
\(\Rightarrow\) n - 2 \(\in\){3; -3; 1;-1}
n \(\in\){5; -1; 3; 2}
c) \(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+......+\dfrac{1}{28.29}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+.....+\dfrac{1}{29}-\dfrac{1}{30}\)
\(=\dfrac{1}{3}-\dfrac{1}{30}\)
\(=\dfrac{10}{30}-\dfrac{1}{30}\)
\(=\dfrac{9}{30}\)
=\(\dfrac{3}{10}\)
A=1/2.9+1/9.7+1/7.19+...+1/252.509
=?
??????
\(\dfrac{a}{n\left(n+a\right)}=\dfrac{1}{n}-\dfrac{1}{n+a}\)
\(\dfrac{a}{n+\left(n+a\right)}+\dfrac{1}{n+a}=\dfrac{1}{n}\)
Vậy ta sẽ CRM\(\dfrac{a}{n+\left(n+a\right)}+\dfrac{1}{n+a}=\dfrac{1}{n}\)
\(\dfrac{a}{n\left(n+a\right)}+\dfrac{1}{n+a}\)
\(=\dfrac{a}{n}\cdot\dfrac{1}{\left(n+a\right)}+\dfrac{1}{n+a}\)
\(=\dfrac{1}{n+a}\cdot\left(\dfrac{a}{n}+1\right)\)
\(=\dfrac{1}{n+a}\cdot\dfrac{a+n}{n}\)
Đã \(CMR:\dfrac{a}{n\left(n+a\right)}=\dfrac{1}{n}-\dfrac{1}{n+a}\)