Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E H M
a) Xét hai tam giác AMB và DMC có:
MA = MD (gt)
\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)
MB = MC (do AM là đường trung tuyến)
Vậy: \(\Delta AMB=\Delta DMC\left(c-g-c\right)\)
Suy ra: AB = CD (hai cạnh tương ứng)
Mà AC > AB (gt)
\(\Rightarrow\) AC > AD
\(\Delta DAC\) có AC > AD \(\Rightarrow\widehat{ADC}>\widehat{DAC}\) (quan hệ giũa góc và cạnh đối diện trong tam giác).
b) \(\Delta ABC\) có: AC > AB (gt)
\(\Rightarrow\) HB > HC (quan hệ giữa đường xiên - hình chiếu)
\(\Delta EBC\) có: HC > HB (cmt)
\(\Rightarrow\) EC > EB (quan hệ giữa đường xiên - hình chiếu).
Giải:
a) \(-1313x^2y.2xy^3\)
\(=\left(-1313.2\right)\left(x^2.x\right)\left(y.y^3\right)\)
\(=-2626x^3y^4\)
Bậc của đơn thức là: \(3+4=7\)
b) \(1414x^3y.\left(-2x^3y^5\right)\)
\(=\left[1414.\left(-2\right)\right]\left(x^3.x^3\right)\left(y.y^5\right)\)
\(=-2828x^6y^6\)
Bậc của đơn thức là: \(6+6=12\).
Chúc bạn học tốt!!!
a) -x2y. 2xy3 = -2x3y4. Đơn thức có bậc là 7
b) x3y. (-2x3y5) = -2x6y6. Đơn thức có bậc là 12
Hướng dẫn giải:
Trước hết ta thu gọn các đơn thức đồng dạng để xác định mỗi chữ cái tương ứng với kết quả nào trong ô trống của bảng.
V 2x2 + 3x2 – 1212 x2 = 9292 x2;
Ư 5xy – 1313 xy + xy = 173173 xy;
N - 1212 x2 + x2 = 1212 x2;
U - 6x2y – 6x2y = -12x2y ;
H xy – 3xy + 5xy = 3xy;
Ê 3xy2 – (-3xy2) = 6 xy2;
Ă 7y2z3 + (-7y2z3) = 0;
L - 1515 x2 + (- 1515 x2) = - 2525 x2;
Vậy tên của tác giả cuốn Đại VIệt sử kí là Lê Văn Hưu.
Gọi d là đường chéo của tủ. h là chiều cao của nhà. h= 21dm.
Ta có d2=202+42=400+16=416.
suy ra d= √416 (1)
Và h2=212=441, suy ra h= √441 (2)
So sánh (1) và (2) ta được d<h.
Như vậy anh Nam đẩy tủ đứng thẳng không bị vướng vào trần nhà.
Lần lượt tính giá trị biểu thức tại x = 3, y = 4, z = 5; ta được
N: x2 = 32 = 9;
T: y2 = 42 =16;
Ă: 1212(xy + z) = 1212(3.4 +5)= 8,5;
L: x2 - y2 = 32 – 42 = -7;
M: t2 = x2 + y2 = 32 + 42 =25 → t = 5 (t là độ dài cạnh huyền);
Ê: 2x2 +1 = 2,52 + 1 = 51;
H: x2 + y2= 32 + 42 =25;
V: z2 – 1= 52 – 1 = 24;
I: 2(y + z) = 2(4 +5) =18;
Điền vào ô trống
Vẽ đường thẳng xy đi qua điểm O sao cho xy // a
Gọi tên các đỉnh như hình vẽ
Ta có \(\widehat{A1}=\widehat{B1}=38^0\)(vì xy//a ,so le trong)
Vì a//b mà xy//a \(\Rightarrow xy\)//b
Ta có \(\widehat{O2}+\widehat{B1}=180^0\)(vì xy//b,trong cùng phía)
Hay \(\widehat{O2}+132^0=180^0\)
\(\Rightarrow\widehat{O2}=180^0-132^0\)
Vậy \(\widehat{O2}=48^0\)
Ta có \(\widehat{O1}+\widehat{O2}=\widehat{AOB}\)
Hay \(38^0+48^0=x\)
Suy ra \(x=86^0\)
Đáp án bài 57:
Kẻ c//a qua O ⇒ c//b
Ta có: a//c ⇒ ∠O1 = ∠A1 ( So le trong)
⇒ ∠O1 = 380
b//c ⇒ ∠O2 + ∠B1 = 1800 ( Hai góc trong cùng phía)
⇒ ∠O2 = 480
Vậy x = ∠O1 + ∠O2 = 380 + 480 x = 860
Xét tam giác vuông AHB (^AHB = 90°) ta có:
AB2 = AH2 + HB2 (vì bình phương cạnh huyền bằng tổng bình phương 2 cạnh góc vuông).
hay 52 = 32 + HB2
=> HB2 = 52 - 32 = 25 - 9 = 16.
HB = \(\sqrt{16}\) = 4.
Vậy HB = 4m.
Độ dài cạnh CH là:
CH = BC - HB
hay CH = 10 - 4 = 6 (m)
Vậy cạnh CH = 6m.
Xét tam giác vuông AHC (^AHC = 90°) ta có:
AC2 = AH2 + CH2
hay AC2 = 32 + 62 = 9 + 36 = 45.
AC = \(\sqrt{45}\approx7.\)
Vậy AC \(\approx7m\).
Độ dài ACD là:
ACD = AC + CD
hay ACD = 7 + 2 = 9 (m).
Vậy ACD = 9m.
2 lần BA là:
5.2 = 10 (m)
Vậy 2 lần BA = 10m.
Mà ACD < BA (9 < 10) nên đường trượt ACD ko gấp hơn hai lần đường lên BA.
Vậy bạn Mai nói sai, bạn Vân nói đúng.
Bài 1: \(a,\widehat{BAy}\) và \(\widehat{ABz}\)
\(\widehat{ABt}và\widehat{xAB}\)
\(b,\widehat{xAB}=\widehat{ABt}\left(soletrong\right)\)
\(\widehat{yAB}=\widehat{zBA}\left(soletrong\right)\)
\(\widehat{xAd}=\widehat{zBA}\) (đồng vị)
\(\widehat{zBd'}=\widehat{xAB}\) (đồng vị)
\(\widehat{BAy}=\widehat{d'Bt}\) (đông vị)
\(\widehat{ABt}=\widehat{dAy}\) (đồng vị)
\(\Rightarrow\)xy//zt
Lm hết hộ em vs ạ, em chán hình lắm, hc ngu nên chán:((