K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

theo tính chất đường phân giác ta cóANBN =ACBC ⇔AN+BNBN =AC+BCBC 

BN=AB.BCAC+BC  .tương tự suy ra CM=AC.BCAB+BC 

giả sử  AB≥AC⇒BN≥CMtheo kết quả vừa tính được

có AB≥AC⇒^B≤^C⇔{

^B1≤^C1
^B2≤^C2

chứng minh được tam giác CND cân theo giả thiết (BNDM là hình bình hành )^D12=^C23

mà ^B2=^D1≤^C2⇒^D2≥^C3⇒CM≥DM=BN

⇒{

BN≥CM
BN≤CM

⇒BN=CM⇒AB=AC⇒tam giác ABC cân

trường hợp AB≤AC làm tương tự

CÓ PHẢI LỚP 1 KO VẬY SAO MÀ KHÓ THẾ!!!!!

la cau hoi ma sao giong cau tra loi vay ban

chua ke day ma la lop 1 sao => lop 12 sieu than dong

16 tháng 8 2019

cái này là câu trả lời luôn r đó bn ơi?

What??!!!!!!!

Đây là bài toán lớp 1 ???

Bn có nhầm ko z??

8 tháng 8 2019

toán lớp 1 ??? giỡn quài , phi logic :3

8 tháng 8 2019

Ap dung bdt AM-GM cho 2 so ko am A,B ta co 

\(\sqrt{A}+\sqrt{B}\)\(\le\)\(2\sqrt{\frac{A+B}{2}}\)

VP =\(\sqrt{AB}.\left(\sqrt{A}+\sqrt{B}\right)\le\frac{A+B}{2}.2\sqrt{\frac{A+B}{2}}\)

    =>VP2 \(\le4.\frac{\left(A+B\right)^3}{4}=\left(A+B\right)^3\left(3\right)\)

Tu (2),(3) => DPCM

Cho hỏi bạn hỏi hay trả lời vậy??????????????????

Ko đăng linh tinh ngoài câu hỏi nha!

25 tháng 11 2018

Lỗi DB

25 tháng 11 2018

lỗi nặng

20 tháng 6 2021

Đây là toán lớp 1 á!

19 tháng 7 2019

C1: Áp dụng hệ thức cosin vào tam giác ABC có: 

\(\frac{AC}{sinB}=\frac{AN}{sinC}\)

\(\Rightarrow AB=\frac{AC}{\sqrt{2}}\)(tự tính)

\(\Leftrightarrow AB^2=\frac{AC^2}{2}=AC\cdot AM\)

Từ đó: CM: tam giác ABM đồng dạng ACB

Suy ra: AMB=45 độ