Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(2x^2-3x\right)\left(5x^2-2x+1\right)\)
\(=2x^2\left(5x^2-2x+1\right)-3x\left(5x^2-2x+1\right)\)
\(=10x^4-4x^3+2x^2-15x^3+6x^2-3x\)
\(=10x^4-19x^3+8x^2-3x\)
a. \(\left(2x^2-3x\right)\left(5x^2-2x+1\right)\)
\(=10x^4-4x^3+2x^2-15x^3+6x^2-3x\)
\(=10x^4-19x^3+8x^2-3x\)
b. \(\left(2x^4-x^3+3x^2\right):\left(\frac{1}{3}x^2\right)\)
\(=\left(2x^4-x^3+3x^2\right).\frac{3}{x^2}\)
\(=0,6x^2-3x+0,9\)
\(a,\left(5x-2y\right)\left(x^2-xy+1\right)=5x^3-5x^2y+5x-2x^2y-2xy^2-2y=5x^3-7x^2y-2xy^2+5x-2y\)\(b\left(x-1\right)\left(x+1\right)\left(x-2\right)=\left(x^2-1\right)\left(x+2\right)=x^3+2x^2-x-2\)\(c,\dfrac{1}{2}x^2y^2\left(2x+y\right)\left(2x-y\right)=\dfrac{1}{2}x^2y^2\left(4x^2-y^2\right)=2x^4y^2-\dfrac{1}{2}x^2y^4\)
\(\frac{x^2-3x-x+3}{x-3}=\frac{x\left(x-3\right)-\left(x-3\right)}{x-3}=\frac{\left(x-3\right)\left(x-1\right)}{x-3}=x-1\)( ĐK: \(x\ne3\))
\(\frac{2x^3-5x^2-4x+3}{2x-1}=\frac{\left(2x^3-x^2\right)-\left(4x^2-2x\right)-\left(6x-3\right)}{2x-1}=\frac{x^2\left(2x-1\right)-2x\left(2x-1\right)-3\left(2x-1\right)}{2x-1}=\frac{\left(2x-1\right)\left(x^2-2x-3\right)}{2x-1}=x^2-2x-3\)( ĐK: \(x\ne\frac{1}{2}\))
Tham khảo nhé~
\(ĐKXĐ:x\ne3;x\ne-1\)
Nếu x=0 là nghiệm của phương trình
Nếu x khác 0 ta có:
\(\frac{1}{2\left(x-3\right)}+\frac{1}{2\left(x-1\right)}=\frac{2}{\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{x-1+x-3}{\left(x-1\right)\left(x-3\right)}=\frac{4}{\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{2x-4}{\left(x-1\right)\left(x-3\right)}=\frac{4}{\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow2x-4=4\)
\(\Leftrightarrow x=4\)
\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\left(x\ne-1;x\ne3\right)\)
<=> \(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
<=> \(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}-\frac{2x\cdot2}{2\left(x+1\right)\left(x-3\right)}=0\)
<=> \(\frac{x^2+x+x^2-3x-4x}{2\left(x-3\right)\left(x+1\right)}=0\)
=> 2x2-6x=0
<=> 2x(x-3)=0
<=> \(\orbr{\begin{cases}2x=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
ĐCĐK x khác -1 và x khác 3 => x=0
Vậy x=0 là nghiệm của phương trình
(8 - 5x).(x + 2) + 4.(x - 2)(x - 1) + 2.(x - 2)(x + 2) + 10
= (8x + 16 - 5x2 - 10x) + 4.(x2 - 3x + 2) + 2.(x2 - 4) + 10
= 8x + 16 - 5x2 - 10x + 4x2 - 12x + 8 + 2x2 - 8 + 10
= (8x - 10x - 12x) + (-5x2 + 4x2 + 2x2) + (16 + 8 - 8 + 10)
= -14x + x2 + 26
2x2 + 3(x - 1)(x + 1) - 5x(x + 1)
= 2x2 + 3.(x2 - 1) - 5x(x + 1)
= 2x2 + 3x2 - 3 - 5x2 - 5x
= -3 - 5x
= 2x2 + 3 (x2 - 1) - 5x2 - 5x ( hằng đẳng thức số 3 )
= 2x2 + 3x2 - 3 - 5x2 - 5x (nhân đơn với đa )
= -5x - 3 (thực hiện phép tính )
(không chắc nữa !!! pn tự kiểm tra lại nhé )