Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\frac{2x}{7}=\frac{3y}{2}\Rightarrow4x=21y\)
\(x-y=17\Rightarrow x=17+y\)
\(\Rightarrow4\left(17+y\right)=21y\Rightarrow68+4y=21y\Rightarrow17y=68\Rightarrow y=4\)
\(\Rightarrow x=17+y=17+4=21\)
a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)
Đến đây tự làm tiếp nhé
b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
=> x = 75, y = 50, z = 30
c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)
\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)
\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)
\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)
=> x=... , y=... , z=...
d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)
Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3
Với k = 3 => x = 6, y = 15
Với k = -3 => x = -6, y = -15
Vậy...
e, Tương tự câu d
b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)
=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)
\(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)
\(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)
Bài 1: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)
=>\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
=>x=27;z=36;z=60
Bài 2: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\Rightarrow xy=2k.5k=10k^2=40\Rightarrow k^2=4\Rightarrow\hept{\begin{cases}k=-2\\k=2\end{cases}}\)
+)k=-2 => x=-4;y=-5
+)k=2 => x=4;y=5
Vậy x=-4;y=-5 hoặc x=4;y=5
Đặt \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{40}=k\Leftrightarrow x=15k;y=20k;z=40k\)
\(xy=1200\\ \Leftrightarrow300k^2=1200\\ \Leftrightarrow k^2=4\Leftrightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=30;y=40;z=80\\x=-30;y=-40;z=-80\end{matrix}\right.\)
Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=5k\end{matrix}\right.\)
Mà \(x.y=10\)
\(\Rightarrow2k.5k=10\)
\(\Rightarrow10.k^2=10\)
\(\Rightarrow k^2=\pm1\)
Với \(k=1\Rightarrow x=2.1=2;y=5.1=5\)
Với \(k=-1\Rightarrow x=2.\left(-1\right)=-2;y=5.\left(-1\right)=-5\)
Vậy \(x=2;y=5\) hoặc \(x=-2;y=-5\)
Vì x/2=y/5 suy ra 5x=2y suy ra y=5x/2
Thay y=5x/2 vào biểu thức xy=10 ta có:
x(5x/2)=10
<=>5x^2=20
<=> x^2=4
suy ra x=± 2 do đó y=±5
Chúc bạn học giỏi
Giải:
Đặt \(\frac{x}{2}=\frac{y}{5}=k\)
\(\Rightarrow x=2k,y=5k\)
Ta có: \(xy=10\)
\(\Rightarrow2k5k=10\)
\(\Rightarrow10k^2=10\)
\(\Rightarrow k^2=1\)
\(\Rightarrow k=\pm1\)
+) \(k=1\Rightarrow x=2;y=5\)
+) \(k=-1\Rightarrow x=-2;y=-5\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(2;5\right);\left(-2;-5\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}\)=\(\dfrac{y}{5}\)=\(\dfrac{x+y}{2+5}\)=\(\dfrac{-21}{7}\)=-3
=>\(\dfrac{x}{2}\)=\(\dfrac{y}{5}\)=5x=2y
=>x=5.-3=-15
=>y=2.-3=-6
Vậy x=-15;y=6
Đặt k, hoặc lm theo cách này cx đc:
Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{xy}{2y}=\dfrac{40}{2y}\)
\(\Rightarrow\dfrac{y}{5}=\dfrac{40}{2y}\Rightarrow2y.y=40.5\)
\(\Rightarrow2y^2=200\Rightarrow y^2=100\)
\(\Rightarrow\left\{{}\begin{matrix}y=10\\y=-10\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{40}{10}=4\\x=\dfrac{40}{-10}=-4\end{matrix}\right.\)
Vậy \(\left(x,y\right)\) là: \(\left(4;10\right);\left(-4;-10\right)\)
Ta có : \(\dfrac{x}{2}=\dfrac{y}{5}=k\Leftrightarrow x=2k;y=5k\)
Mà : x.y=40
\(\Leftrightarrow2k.5k=40\Leftrightarrow10k^2=40\Rightarrow k^2=4\Rightarrow k=\pm2\)
Với \(\dfrac{x}{2}=2\Rightarrow x=4\)
Với \(\dfrac{y}{5}=2\Rightarrow y=10\)
Với \(\dfrac{x}{2}=-2\Rightarrow x=-4\)
Với \(\dfrac{y}{5}=-2\Rightarrow y=-10\)
Vậy x=4 và y=10 hoặc x=-4 và y=-10