Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử:0<a<b<c
=>1/a>1/b>1/c
=>1/a+1/b+1/c<1/a+1/a+1/a
17/18<3/a
<=>51/54<51/17a=>54>17a
3>a
Mà a thuộc N=>a={1;2}
Với a=1,ta có:1+1/b+1/c=17/18
1/b+1/c=-1/18
Mà b;c thuộc N=>1/b+1/c ko thể là số nguyên âm(loại)
Với a=2.Ta có:1/2+1/b+1/c=17/18
1/b+1/c=17/18 - 1/2=4/9
Vì 1/b>1/c nên :1/b+1/b>4/9
<=>2/b>4/9
4/2b>4/9
=>2b<9=>b<4=>b={1;2;3;4}(1)
Mà 1/b+1/c=4/9=>1/b<4/9
<=>4/4b<4/9=>4b>9=>b>2(2)
Từ (1) và(2)=>b={3;4}
Với b=3.Ta có:1/3+1/c=4/9
=>c=9
Với b=4.Ta có:1/4+1/c=4/9
=>c=36/7(loại)
Vậy a=2;b=3;c=9
\(\left(3n+2\right)⋮\left(n-1\right)\)
\(\Rightarrow\left(3n-3+5\right)⋮\left(n-1\right)\)
\(\Rightarrow5⋮\left(n-1\right)\)
\(\Rightarrow n-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow n\in\left\{-4;0;2;6\right\}\)
ban Nguyen Chau Tuan Kiet tra loi dung nhung ban quen y n thuoc N roi
gọi d là UCLN (2n+1:3n+1)
ta có 2n+1 chia hết cho d suy ra 3.(2n+1) chia hết cho d suy ra 6n+3 chia hết cho d
3n+1 chia hết cho d 2.(3n+1) chia hết cho d 6n+2 chia hết cho d ta lấy 6n-6n là hết;3-2=1
suy ra d=1
UCLN(2n+1;3n+1)=1
Ta có :
\(\frac{52}{9}=5+\frac{7}{9}\)
\(\frac{7}{9}=\frac{1}{\frac{9}{7}}=\frac{1}{1+\frac{2}{7}}\)
\(\frac{2}{7}=\frac{1}{\frac{7}{2}}=\frac{1}{1+\frac{5}{2}}\)
\(\frac{5}{2}=\frac{1}{\frac{2}{5}}\)
\(\Rightarrow\frac{52}{9}=5+\frac{1}{1+\frac{1}{1+\frac{1}{\frac{2}{5}}}}\)
\(\Rightarrow\hept{\begin{cases}a=1\\b=1\\c=\frac{2}{5}\end{cases}}\)
b) có n thuộc Z =>3n+1 thuộc Z, n-3 thuộc Z
A=3n+1 / n-3 có giá trị nguyên <=> 3n+1 chia hết cho n-3
<=>3n-9+10 chia hết cho n-3
<=>3(n-3)+10 chia hết cho n-3
<=>10 chia hết cho n-3 ( vì 3(n-3) chia hết cho n-3)
<=>n-3 thuộc Ư (10)
n-3 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
n | 4 | 2 | 5 | 1 | 8 | -2 | 13 | -7 |
vậy tất cả các giá trị nguyên n đều thỏa mãn
n thuộc {4;2;5;1;8;-2;13;-7}
b,do n thuộc Z =>3n+1 thuộc Z
n-3 thuộc z
n-3 không bằng 0
<=>n-3 không bằng 0 và 3n+1 thuộc Z thì A=\(\frac{3n+1}{n-3}\)là số nguyên (thuộc Z)