Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình có hai nghiệm phân biệt
<=> \(\Delta'=\left(m+1\right)^2-\left(m+1\right)=\left(m+1\right)\left(m+1-1\right)=m\left(m+1\right)>0\)
<=> \(\orbr{\begin{cases}m>0\\m< -1\end{cases}}\)(@@)
Theo định lí vi et ta có: \(x_1x_2=m+1;x_2+x_2=-2\left(m+1\right)\)
Theo bài ra: \(\left(x_1-1\right)\left(x_2-1\right)< 0\)
<=> \(x_1x_2-\left(x_1+x_2\right)+1< 0\)
<=> 3 ( m + 1 ) + 1 < 0
<=> m < -4/3 thỏa mãn @@
Vậy...
Để pt có 2 nghiệm khác 0:
\(\left\{{}\begin{matrix}m-1\ne0\\\Delta'=m^2-\left(m-1\right)\left(m+1\right)\ge0\\x_1x_2=\frac{m+1}{m-1}\ne0\end{matrix}\right.\) \(\Rightarrow m\ne\pm1\)
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}>-\frac{5}{2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}+\frac{5}{2}>0\)
\(\Leftrightarrow\frac{2\left(x_1+x_2\right)^2+x_1x_2}{2x_1x_2}>0\)
\(\Leftrightarrow\frac{8\left(\frac{m}{m-1}\right)^2+\frac{m+1}{m-1}}{\frac{2\left(m+1\right)}{m-1}}>0\Leftrightarrow\frac{\frac{8m^2}{m-1}+m+1}{2\left(m+1\right)}>0\)
\(\Leftrightarrow\frac{9m^2-1}{2\left(m-1\right)\left(m+1\right)}>0\Leftrightarrow\frac{\left(3m-1\right)\left(3m+1\right)}{2\left(m-1\right)\left(m+1\right)}>0\)
\(\Rightarrow\left[{}\begin{matrix}m< -1\\-\frac{1}{3}< m< \frac{1}{3}\\m>1\end{matrix}\right.\)
1: TH1: m=0
=>-x-2=0
=>x=-2(loại)
TH2: m<>0
\(\text{Δ}=\left(2m-1\right)^2-4m\left(m-2\right)\)
=4m^2-4m+1-4m^2+8m
=4m+1
Đểphương trình có 2 nghiệm pb thì 4m+1>0
=>m>-1/4
2: TH1: m=1
Pt sẽ là -2x-1=0
=>x=-1/2(nhận)
TH2: m<>1
\(\text{Δ}=\left(-2m\right)^2-4\left(m-1\right)\left(m-2\right)\)
=4m^2-4(m^2-3m+2)
=-4(-3m+2)
=12m-8
Để phương trình có 1 nghiệm thì 12m-8=0
=>m=2/3
Bài 2:
Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0
hay -2<m<2
TH1: m+1=0 <=> m=-1
Khi đó bpt là -2(-1+1)x+4 >= 0 <=> -4x+4 >= 0 <=> x<=1 (KTM S=R) => loại
TH2: m+1 khác 0 <=> m khác -1
Để bpt (m+1)x2 -2(m+1)x+4 ≥ 0 có nghiệm với mọi x
<=> {a>0Δ′≤0⇔{m+1>0[−(m+1)]2−4(m+1)≤0{a>0Δ′≤0⇔{m+1>0[−(m+1)]2−4(m+1)≤0
<=>{m>−1m2−2m−3≥0⇔⎧⎪⎨⎪⎩m>−1[m<−1m>3⇔m>3{m>−1m2−2m−3≥0⇔{m>−1[m<−1m>3⇔m>3
Vậy m>3 thì...
TH1: m+1=0 <=> m=-1
Khi đó bpt là -2(-1+1)x+4 >= 0 <=> -4x+4 >= 0 <=> x<=1 (KTM S=R) => loại
TH2: m+1 khác 0 <=> m khác -1
Để bpt (m+1)x2 -2(m+1)x+4 ≥ 0 có nghiệm với mọi x
<=> \(\left\{{}\begin{matrix}a>0\\\Delta'\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\left[-\left(m+1\right)\right]^2-4\left(m+1\right)\le0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}m>-1\\m^2-2m-3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m< -1\\m>3\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m>3\)
Vậy m>3 thì...
Để pt có 2 nghiệm pb \(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\\Delta'=m^2-m\left(m-1\right)>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>0\\m\ne1\end{matrix}\right.\)
Đặt \(f\left(x\right)=\left(m-1\right)x^2-2mx+m\)
Để pt có 2 nghiệm thỏa mãn \(x_1< 1< x_2\)
\(\Leftrightarrow\left(m-1\right).f\left(1\right)< 0\)
\(\Leftrightarrow\left(m-1\right)\left(m-1-2m+m\right)< 0\)
\(\Leftrightarrow1-m< 0\Rightarrow m>1\)
Vậy \(m>1\)