K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2016

Bạn tham khảo bài này, có dạng tương tự.

http://olm.vn/hoi-dap/question/776690.html

21 tháng 12 2016

Ta có

\(x^4+x^3+x^2+x+1=y^2\)

\(\Leftrightarrow4y^2=4x^4+4x^3+4x^2+4x+4\)cũng là số chính phương

Ta thấy rằng

\(4x^4+4x^3+4x^2+4x+4>4x^4+4x^3+x^2=\left(2x^2+x\right)^2\)

Và 

\(4x^4+4x^3+4x^2+4x+4< 4x^4+4x^3+9x^2+4x+4=\left(2x^2+x+2\right)^2\)

\(\Rightarrow\left(2x^2+x\right)^2< \left(2y\right)^2< \left(2x^2+x+2\right)^2\)

\(\Rightarrow4y^2=\left(2x^2+x+1\right)^2\)

\(\Leftrightarrow4x^4+4x^3+4x^2+4x+4=4x^4+4x^3+5x^2+2x+1\)

\(\Leftrightarrow x^2-2x-3=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)

4 tháng 6 2018

a/ ta có: 

\(x\sqrt{2y-1}+y\sqrt{2x-1}=\sqrt{x}.\sqrt{2xy-x}+\sqrt{y}.\sqrt{2xy-y}\)

\(\le\frac{x+2xy-x}{2}+\frac{y+2xy-y}{2}=2xy\)

Dấu = xảy ra khi ...

4 tháng 6 2018

Khi gì

23 tháng 9 2021

81:9= 9

3 tháng 9 2015

số chính phương là số ntn v mí bạn?

25 tháng 8 2021

\(A=\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{3\sqrt{x}+1}{x-1}\)

\(A=\frac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(A=\frac{2\sqrt{x}-1}{\sqrt{x}+1}\)

24 tháng 10 2015

Dùng biến đổi tương đương chứng minh được :

( x+ x+2)= x4 + 2x3 + 5x2 +4x+4 > x4 +2x3 +2x2 +x+3 > x+ 2x3 +x2 = ( x2 +x)

=) x4 +2x3 +2x2 +x+3 = ( x+x+1) (=) x4 +2x3 +2x2 +x+3 = x4 +2x3 +3x2 +2x+1 

(=) x+x-2=0 (=) x=1 hoặc x=-2

2 tháng 9 2019

AI GIẢI HỘ MÌNH K CHO Ạ!!!

13 tháng 9 2019

1)  a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)

b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)

Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)

Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)

Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)

Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)

c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)

\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)

\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)

25 tháng 4 2020

Đặt: \(y^2=\) \(x^4+\left(x+1\right)^3-2x^2-2x\)

\(x^4+x^3+x^2+x+1\) là số chính phương 

<=> \(4y^2=4x^4+4x^3+4x^2+4x+4\)

Ta có: 

\(4y^2=4x^4+4x^3+4x^2+4x+4>4x^4+4x^3+x^2=\left(2x^2+x\right)^2\)

\(4y^2=4x^4+4x^3+4x^2+4x+4\le4x^4+4x^3+9x^2+4x+4=\left(2x^2+x+2\right)^2\)

=> \(\left(2x^2+x\right)^2< \left(2y\right)^2\le\left(2x^2+x+2\right)^2\)

=> \(\orbr{\begin{cases}4y^2=\left(2x^2+x+2\right)^2\\4y^2=\left(2x^2+x+1\right)^2\end{cases}}\)

TH1: \(4y^2=\left(2x^2+x+2\right)^2\)

hay \(4x^4+4x^3+4x^2+4x+4=4x^4+4x^3+9x^2+4x+4\)

<=> \(x=0\)thỏa mãn

Th2: \(4y^2=\left(2x^2+x+1\right)^2\)

hay \(4x^4+4x^3+4x^2+4x+4=4x^4+5x^2+1+4x^3+2x\)

<=> \(x^2-2x-3=0\)

<=> x = 3 hoặc x = -1. thử lại thỏa mãn 

Vậy x = 0 ; x = -1 hoặc x = 3