Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=2022^{2022}\)
\(A=\left(2022^4\right)^{505}.2022^2\)
\(A=\left(\overline{...6}\right).\left(\overline{...4}\right)\)
\(A=\left(\overline{...4}\right)\)
Vậy ...
Ta có:
\(3^{2^{1990}}=3^{4^{995}}=3^{...4}=9^{...2}=...1\)
nếu cần công thức thì nói vs tui :)
vì lũy thừa có cơ số là 12 luôn có tận cùng là số chẵn
mà lũy thừa có cơ số là 5 luôn có tận cùng là 5
=> 22013x122015 có tận cùng là không
Những số có chữ số tận cùng là 2,4,8 khi nâng lên mũ 4 có tận cùng là 6
Thật vậy
\(4^{2k}=2^{4k}=...6\)
\(4^{2k+1}=2^{4k+2}=2^{4k}.4=\left(...6\right).4=...4\)
Ta có : 9^2k = (9^2)^k= (......1)^k=(.....1)
9^2k+1=9^2k+9=(9^2)^k+9=(.....1)^k+9=(....1)+9=(....0)
# chúc học tốt #
\(7^{400}=\left(7.7.7.7\right).\left(7.7.7.7\right).....\left(7.7.7.7\right)\)
\(=7^4.7^4.....7^4\)
=> có tất cả 400:4=100 lũy thừa 74 như thế, mà 74 có chữ số tận cùng là 1
=> 7400 có tận cùng là 1
Mk diễn giải ko đc tốt lắm mong bn thông cảm
Thấy đúng thì tk nha, thanks.
Ta có: \(2^{2023}=2^{2020+3}=2^{2020}.2^3\)
\(=\left(2^4\right)^{505}.2^3=16^{505}.8\)
\(=\left(....6\right).8\)
Vậy chữ số tận cùng sẽ luôn là 8
Ta có:
\(2^{2023}\)
\(=2^{2020+3}\)
\(=\left(2^4\right)^{505}.2^3\)
\(=16^{505}.8\)
\(=\left(...6\right)^8\)
\(=8\)
Vậy tận cùng của \(2^{2023}là8\)
13²⁰⁷ = (13⁴)⁵⁰ . 13³
Ta có:
13³ ≡ 7 (mod 10)
13⁴ ≡ 1 (mod 10)
⇒ (13⁴)⁵⁰ ≡ 1⁵⁰ (mod 10) ≡ 1 (mod 10)
⇒ (13⁴)⁵⁰.13³ ≡ 1.7 (mod 10) ≡ 7 (mod 10)
Vậy chữ số tận cùng của 13²⁰⁷ là 7