Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)
Dấu bằng xảy ra khi \(-5\le x\le-2\)
\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)
Dấu bằng xảy ra khi \(x=2\)
\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)
Dấu bằng xảy ra khi \(x\ge2\)
\(B=x\left(x+3\right)\)
\(B=x^2+3x\)
\(B=x^2+2\cdot x\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2\)
\(B=\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\)
Vì \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow B\ge\frac{9}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)
P.s L cái này dùng hằng đẳng thức sợ bạn chưa học :v
Đặt A = |2014-x|+|2015-x|+|2016-x| = |x-2014|+|2015-x|+|2016-x|
Ta có: \(\left|x-2014\right|+\left|2016-x\right|\ge\left|x-2014+2016-x\right|=2\)
MÀ \(\left|2015-x\right|\ge0\)
\(\Rightarrow A=\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\ge2+0=2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(2014-x\right)\left(x-2016\right)\ge0\\\left|2015-x\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2014\le x\le2016\\x=2015\end{cases}\Rightarrow}x=2015}\)
Vậy GTNN của A = 2 khi x=2015
Áp dụng bđt |a|+|b|\(\ge\)|a+b| ta được: H=|x-3|+|4+x|=|3-x|+|4+x|\(\ge\)|3-x+4+x|=7
Dấu "=" xảy ra khi \(-4\le x\le3\)
Vậy minH=7 khi \(-4\le x\le3\)