K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 1 2024

Lời giải:

$A=x^3+y^3+xy=(x+y)^3-3xy(x+y)+xy$

$=1-3xy+xy=1-2xy=(x+y)^2-2xy=x^2+y^2$

Áp dụng BĐT Cô-si:

$x^2+\frac{1}{4}\geq x$

$y^2+\frac{1}{4}\geq y$

$\Rightarrow A=x^2+y^2\geq x+y-\frac{1}{2}=1-\frac{1}{2}=\frac{1}{2}$
Vậy $A_{\min}=\frac{1}{2}$

Giá trị này đạt tại $x=y=\frac{1}{2}$

20 tháng 9 2018

Ta có:

A=\(\frac{x\sqrt{y-2}+y\sqrt{x-3}}{xy}\)

\(=\frac{\sqrt{y-2}}{y}+\frac{\sqrt{x-3}}{x}\)

Do \(x\ge3;y\ge2\)nen 

\(\frac{\sqrt{y-2}}{y}\ge0;\frac{\sqrt{x-3}}{x}\ge0\)

\(\Rightarrow A\ge0\)

Dau "=" xảy ra khi y=2 ; x=3

Vay minA =0 khi x=3; y=2

26 tháng 8 2020



bđt1

bạn sửa lại là 9-2t^2 nhé , mình đánh nhầm ^^

26 tháng 8 2020

chuẩn nhé !

bđt 123

29 tháng 6 2016

Thay \(1=\left(x+y\right)^3\)vào biểu thức A ta có :

\(A=\frac{\left(x+y\right)^3}{x^3+y^3}+\frac{\left(x+y\right)^3}{xy}=\frac{x^3+y^3+3xy\left(x+y\right)}{x^3+y^3}+\frac{x^3+y^3+3xy\left(x+y\right)}{xy}\)

\(=1+\frac{3xy}{x^3+y^3}+3+\frac{x^3+y^3}{xy}\)

\(=4+\left(\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\right)\ge4+2\sqrt{\frac{3xy\left(x^3+y^3\right)}{xy\left(x^3+y^3\right)}}\)\(=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)(chỗ này áp dụng cosi 2 số)

29 tháng 6 2016

chờ tí tui lm cho

5 tháng 2 2016

giải giùm mình

10 tháng 1 2018

Áp dụng BĐT svacxơ, ta có 

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\ge4\)

Dấu = xảy ra <=>x=y=1/2

^_^