K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2017

ta có

\(\sqrt{\left(x-5\right).1}\le\frac{x-5+1}{2}=\frac{x-4}{2}\)

\(\sqrt{\left(7-x\right).1}\le\frac{7-x+1}{2}=\frac{-x+8}{2}\)

\(\Rightarrow P\ge\frac{x-4}{2}+\frac{8-x}{2}=2\)

Dấu = xảy ra <=> \(\hept{\begin{cases}x-5=1\\7-x=1\end{cases}\Leftrightarrow x=6}\)

vậy min P=2 khi x=6

23 tháng 8 2019

ĐKXĐ:

 \(\sqrt{x-5}\ge0\Rightarrow x\ge5\)

\(\sqrt{7-x}\ge0\Rightarrow x\le7\)

=> Pmax =2 tại x=7

23 tháng 8 2019

DKXD:\(5\le x\le7\)

GTLN: \(P=\sqrt{x-5}+\sqrt{7-x}=1.\sqrt{x-5}+1.\sqrt{7-x}\)

                                  \(\le\frac{1^2+\left(\sqrt{x-5}\right)^2}{2}+\frac{1^2+\left(\sqrt{7-x}\right)^2}{2}\left(bdtCOSI\right)\)

                                    \(=\frac{2+x-5+7-x}{2}=2\)

                       "="\(\Leftrightarrow\hept{\begin{cases}1=\sqrt{x-5}\\1=\sqrt{7-x}\\7\ge x\ge5\end{cases}}\Leftrightarrow x=6\)

Vậy..............................................................

GTNN: ta sẽ chứng minh: \(P\ge\sqrt{2}\)

 bđt có thể viết lại thành:\(\sqrt{x-5}+\sqrt{7-x}\ge\sqrt{2}\Leftrightarrow\left(\sqrt{x-5}+\sqrt{7-x}\right)^2\ge\left(\sqrt{2}\right)^2\)

                                       \(\Leftrightarrow x-5+7-x+2\sqrt{\left(x-5\right)\left(7-x\right)}\ge2\Leftrightarrow2+2\sqrt{\left(x-5\right)\left(7-x\right)}\ge2\)

                                       \(\Leftrightarrow2\sqrt{\left(x-5\right)\left(7-x\right)}\ge0\)(đúng với mọi x thỏa mãn \(7\ge x\ge5\))

          "="\(\Leftrightarrow\hept{\begin{cases}2\sqrt{\left(x-5\right)\left(7-x\right)}\\7\ge x\ge5\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=7\end{cases}}}\)

                      Vậy..........

2 tháng 10 2016
  • \(A=\frac{3-5\sqrt{x}}{\sqrt{x}+1}=\frac{-5\left(\sqrt{x}+1\right)+8}{\sqrt{x}+1}=\frac{8}{\sqrt{x}+1}-5\)

Ta có \(\sqrt{x}+1\ge1\Rightarrow\frac{8}{\sqrt{x}+1}-5\le3\Rightarrow A\le3\)

Max A = 3 <=> x = 0

  • Không tồn tại giá trị nhỏ nhất.
14 tháng 2 2016

để biểu thức C xác định thì xảy ra đồng thời

  • x-2>=0
  • 5-x>=0

=>2=<x=<5

thay x=2;3;4;5

tim ra gia tri nho nhat va lon nhat

Ta có :
\(\sqrt{x^2-6x+9}=\sqrt{\left(x-3\right)^2}\)

Đến đây bạn làm như thường là đưcọ rồi

Chúc bạn học tốt

16 tháng 8 2018

\(=7-\sqrt{\left(x-3\right)^2}\le7\)

GTLN là 7

27 tháng 7 2017

1 ) \(A=\sqrt{x-2}+\sqrt{4-x}\)

ĐKXĐ : \(2\le x\le4\)

\(\Rightarrow A^2=x-2+4-x+2\sqrt{\left(x-2\right)\left(4-x\right)}=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)

Áp dụng bđt AM - GM ta có : 

\(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\)

\(\Rightarrow A^2\le2+2=4\Rightarrow-2\le A\le2\)

Mà A > 0 nên ko thể có min = - 2 nên \(2\le x\le4\) ta chọn x = 2

=> A = \(\sqrt{2}\)

Vậy \(\sqrt{2}\le A\le2\)

30 tháng 11 2015

Ta có 

\(\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{1}{\sqrt{x}}+1+\sqrt{x}\)

Áp dụng bất đẳng thức cô si cho 2 số không âm ta có

\(\frac{1}{\sqrt{x}}+\sqrt{x}\ge2\)

=>\(1+\frac{1}{\sqrt{x}}+\sqrt{x}\ge3\)

dấu bằng xảy ra <=>x=1

 

 

30 tháng 11 2015

tick rui mình làm câu b cho

19 tháng 11 2016

1/ \(C=\frac{x+9}{10\sqrt{x}}=\frac{\sqrt{x}}{10}+\frac{9}{10\sqrt{x}}\ge2.\frac{3}{10}=0,6\)

Đạt được khi x = 9

19 tháng 11 2016

2/ \(E=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=x-3\sqrt{x}+2\)

\(=\left(x-\frac{2.\sqrt{x}.3}{2}+\frac{9}{4}\right)-\frac{1}{4}\)

\(=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Vậy GTNN là \(-\frac{1}{4}\)đạt được khi \(x=\frac{9}{4}\)

Không có GTLN nhé