Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a) cos7x - √3 sin7x = -√2 (a = 1; b = -√3; c = -√2)
=> a^2 + b^2 =4 > c^2 = 2
Chia 2 vế pt (*) cho \(\sqrt{a^2+b^2}=2\) ta đc:
<=> 1/2cos7x - √3/2 sin7x = -√2/2
<=> sin(π/6)cos7x - cos(π/6)sin7x = sin(-π/4)
<=> sin(π/6 - 7x) = sin(-π/4)
<=> π/6 - 7x = -π/4 + k2π
hoặc (k∈Z)
π/6 - 7x = π + π/4 + k2π
<=> x = 5π/84 + k2π/7
hoặc (k∈Z)
x = -13π/84 + k2π/7
1) b) Ta có:
* 2π/5 < x < 6π/7
<=> 2π/5 < 5π/84 + k2π/7 < 6π/7
<=> 143π/420 < k2π/7 < 67π/84
<=> 143/120 < k < 67/24
=> k ϵ {2}
=> x = 53π/84
* 2π/5 < x < 6π/7
<=> 2π/5 < -13π/84 + k2π/7 < 6π/7
<=> 233/120 < k < 85/24
=> k ϵ {2; 3}
=> x = 5π/12 ; x = 59π/84
Vậy có tất cả 3 nghiệm thỏa mãn (2π/5;6π/7) là x = 53π/84; x = 5π/12 ; x = 59π/84.
e/
\(y=5sinx+6cosx-7\)
\(=\sqrt{61}\left(\frac{5}{\sqrt{61}}sinx+\frac{6}{\sqrt{61}}cosx\right)-7\)
\(=\sqrt{61}\left(sinx.cosa+cosx.sina\right)-7\) (với \(a\in\left(0;\pi\right)\) sao cho \(cosa=\frac{5}{\sqrt{61}}\))
\(=\sqrt{61}.sin\left(x+a\right)-7\)
Do \(-1\le sin\left(x+a\right)\le1\Rightarrow7-\sqrt{61}\le y\le7+\sqrt{61}\)
\(y_{min}=7-\sqrt{61}\) khi \(sin\left(x+a\right)=-1\)
\(y_{max}=7+\sqrt{61}\) khi \(sin\left(x+a\right)=1\)
f/
\(y=2\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)+3\)
\(=2sin\left(x+\frac{\pi}{3}\right)+3\)
\(\Rightarrow1\le y\le5\)
\(y_{min}=1\) khi \(sin\left(x+\frac{\pi}{3}\right)=-1\)
\(y_{max}=5\) khi \(x+\frac{\pi}{3}=1\)
c/
\(y=2\left(1-cos2x\right)+sin2x+cos2x\)
\(=sin2x-cos2x+2=\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)+2\)
Do \(-1\le sin\left(2x-\frac{\pi}{4}\right)\le1\)
\(\Rightarrow2-\sqrt{2}\le y\le2+\sqrt{2}\)
\(y_{min}=2-\sqrt{2}\) khi \(sin\left(2x-\frac{\pi}{4}\right)=-1\)
\(y_{max}=2+\sqrt{2}\) khi \(sin\left(2x+\frac{\pi}{4}\right)=1\)
d/
\(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)
\(=1-3sin^2x.cos^2x\)
\(=1-\frac{3}{4}sin^22x\)
Mà \(0\le sin^22x\le1\Rightarrow\frac{1}{4}\le y\le1\)
\(y_{min}=\frac{1}{4}\) khi \(sin^22x=1\)
\(y_{max}=1\) khi \(sin2x=0\)
a.
\(-1\le sinx\le1\Rightarrow-7\le y\le-3\)
\(y_{min}=-7\) khi \(sinx=-1\)
\(y_{max}=-3\) khi \(sinx=1\)
b.
\(-1\le cos\left(x+\frac{\pi}{3}\right)\le1\Rightarrow1\le y\le5\)
\(y_{min}=1\) khi \(cos\left(x+\frac{\pi}{3}\right)=-1\)
\(y_{max}=5\) khi \(cos\left(x+\frac{\pi}{3}\right)=1\)
c.
\(0\le1-cosx\le2\Rightarrow-5\le y\le3\sqrt{2}-5\)
\(y_{min}=-5\) khi \(cosx=1\)
\(y_{max}=3\sqrt{2}-5\) khi \(cosx=-1\)
d.
ĐKXĐ: \(0\le sinx\Rightarrow0\le sinx\le1\Rightarrow1\le y\le3\)
\(y_{min}=1\) khi \(sinx=0\)
\(y_{max}=3\) khi \(sinx=1\)
a/ \(y=sin2x+\left(\sqrt{3}+1\right)cos2x+sin^2x-cos^2x-1\)
\(=sin2x+\sqrt{3}cos2x-1=2sin\left(2x+\frac{\pi}{3}\right)-1\)
Do \(-1\le sin\left(2x+\frac{\pi}{3}\right)\le1\Rightarrow-3\le y\le1\)
b/ \(y=2sin^2x-2cos^2x-3sinx.cosx-1\)
\(=-2cos2x-\frac{3}{2}sin2x-1=-\frac{5}{2}\left(\frac{3}{5}sinx+\frac{4}{5}cosx\right)-1\)
\(=-\frac{5}{2}sin\left(x+a\right)-1\Rightarrow-\frac{7}{2}\le y\le\frac{3}{2}\)
c/ \(y=1-sin2x+2cos2x+\frac{3}{2}sin2x=\frac{1}{2}sin2x+2cos2x+1\)
\(=\frac{\sqrt{17}}{2}\left(\frac{1}{\sqrt{17}}sin2x+\frac{4}{\sqrt{17}}cos2x\right)+1=\frac{\sqrt{17}}{2}sin\left(2x+a\right)+1\)
\(\Rightarrow-\frac{\sqrt{17}}{2}+1\le y\le\frac{\sqrt{17}}{2}+1\)
\(y=\sqrt{5}\left(\frac{2}{\sqrt{5}}sinx+\frac{1}{\sqrt{5}}cosx\right)=\sqrt{5}.sin\left(x+a\right)\)
Do \(-1\le sina\le1\)
\(\Rightarrow-\sqrt{5}\le y\le\sqrt{5}\)
Câu 2:
ĐKXĐ: \(x+180^0\ne90^0+k\cdot180^0\)
hay \(x\ne k\cdot180^0-90^0\)
Câu 4:
ĐKXĐ: \(\left\{{}\begin{matrix}2x\ne k\cdot180^0\\2x\ne90^0+k\cdot180^0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{k\Pi}{2}\\x\ne\dfrac{k\Pi}{2}+\dfrac{\Pi}{4}\end{matrix}\right.\)
a.\(-1\le cosx\le1\Rightarrow-4\le y=3cosx-1\le2\)
b.-1 \(\le sinx\le1\)\(\Rightarrow3\le y=5+2sinx\le7\)
c.\(\sqrt{3-1}\le\sqrt{3+cos2x}\le\sqrt{3+1}\Rightarrow\sqrt{2}\le y\le2\)
d.\(y=\sqrt{5sinx-1}+2\le\sqrt{5.1-1}+2=4\)
\(y=\sqrt{5sinx-1}+2\ge2\) . " = " \(\Leftrightarrow sinx=\dfrac{1}{5}\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(\dfrac{1}{5}\right)+2k\pi\\x=\pi-arcsin\left(\dfrac{1}{5}\right)+2k\pi\end{matrix}\right.\) ( k thuộc Z )